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I State of Knowledge at the Start of Project

A By 1990, the time of the writing of the proposal for this grant, some aspects of failure
of quasi-brittle materials were already understood. But the continuum description of
solids with statistically nonuniform crack arrays was not understood. The mathematical P
approaches were semi-empirical, phenomenological and descriptive rather than predictive.
The lacked theoretical foundation in micromechanics.

a) Initial Nonlocal Damage Concept and Localization Limiter P
Quasibrittle materials are characterized by development of large zones of distributed crack-
ing damage before the final fracture. Prior to 1976, the distributed damage was simply
ignored and structures were analyzed according to elasticity with a strength (or allowable
stress) limit, plastic limit analysis, or fracture mechanics of distinct cracks. In the 1970"s.
various constitutive models with the so-called strain softening (that is, a decrease of stress p
with increasing strain) were proposed to handle distributed cracking. Examples were the
continuum damage mechanics, endochronic theory, or plasticity with a degrading yield
limit.

It was soon realized, however, that strain softening has a basic fault: the material
is inherently unstable. This leads to spurious excessive localization of damage. In finite 0
element analysis, this is manifested by the so-called spurious mesh sensitivity, which
is caused by the fact that the damage front tends to localize into the smallest volume
possible. This causes that, upon refining the element size to zero, the energy required
to fail the structure tends also to zero, which is of course physically impossible. At the

9 beginning of 1980's, it was proposed to cope with these problems by introducing some 0
sort of a localization limiter. This concept was formulated first in the form of the so-called
crack band model, and then in the more general form of a nonlocal damage continuum (to
be distinguished from the classical nonlocal concept of Eringen, which dealt with nonlocal
elasticity).

In the nonlocal formulation, the increments of damage (or cracking strain) were cal- 0
culated from the average strain taken over the neighborhood of a given point. The size of
this neighborhood had to be specified. This was done by introducing a material property
called the characteristic length. The volume over which the averaging was carried out was
called the characteristic volume.

The nonlocal approach did overcome the aforementioned mathematical difficulties. 0
The boundary value problem with strain softening was regularized, the paradoxical phe-
nomenon of imaginary wave speed (non-existence of wave propagation) was eliminated,
excessive (unrestricted) damage localization was prevented and, in finite element calcula-
tions, the spurious mesh sensitivity was avoided. It was also demonstrated that the finite
element calculations could be made to match many experimental results quite well. 0

The critical test results were those concerned with the size effect, that is, the de-
pendence of the nominal strength (maximum load divided by characteristic structure
dimension and thickness) on the characteristic dimension (size) of the structure. Individ-
ually, these results were described quite successfully with the nonlocal damage concepts.

3
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In particular, the finite element results were shown to agree with the approximate size

effect law representing a transition from plastic limit analysis at very small structure sizes
AW to linear elastic fracture mechanics at very large structure sizes. The largest amount of

test results were gathered for concrete, but many test results were also assembled for rock.

and some for ice and wood. It was also shown that from the measurements of the size

effect is should be possible to calibrate the nonlocal continuum models, and particularly
to determine the characteristic length of the material.

However, a fundamental problem was recognized at the end of the 1980's: The nonlocal
concept was purely empirical. Although it was felt it had to do with the coarseness of
the microstructure and with the size and spacing of the microcracks, no physically based
micromechanical theory for the nonlocal continuum concept was available. The spatial
averaging was entirely a phenomenological concept. It was not known what the tensorial
and directional character of the averaging should be. So it was taken simply as scalar and
directionally isotropic, for no other reason than lack of knowledge.

By fitting of numerous test data with finite element codes, it was also discovered that
different types of problems required using different characteristic lengths, for the same
material. Thus, the nonlocal models did not have predictive capability, except for each

narrow range of problems for which they were calibrated. Also, the size effect and scaling
laws were tied to a particular geometry and could not be translated from one type of
structure to another.

It thus became obvious that a serious micromechanical analysis had to be undertaken
to put the nonlocal continuum concept on a sound physical foundation. To do that was
taken in 1990 as the principal objective of the proposal for the present project.

With regard to the size effect, another gap was in the role of interfacial slip and
interfacial fracture, for example along the interfaces of fibers and matrix in composites.
A further gap was the nonexistence of broad-range experimental data on the size effect in
geometrically scaled specimens of fiber composites. Only such results can clearly reveal
the inapplicability of strength theories or plastic-type limit analysis.

Furthermore, the test results were limited to tensile dominated failures. There was
scarcely any information on the role of distributed cracking and the inherent size effect
in compression failure of quasi-brittle materials.

b) Weibull's Theory of Random Strength

There were also misconceptions. There was a competing and much older theory of the size
effect, proposed by Weibull in 1939. This theory, in which the size effect was explained
by the randomness of the material strength, ignored the large stress redistributions that
are caused by damage growth prior to failure. It also ignored the fact that the release of
stored energy from the structure, which is larger in a larger structure, is itself a source of
a strong deterministic size effect.

It thus became clear that Weibull's statistical theory of size effect could apply only
to those structures which fail at the initiation of macroscopic cracking, that is at the
moment the microscopic flaws cease to be microscopic. This approximation is of course
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good enough for many structures, parm+ularly metallic structures, which typically fail (or
must be considered to fail) when a crack exceeds about 1% of the cross section dimension.
for which the stress redistributions and energy release aspects are still macroscopically
insignificant. However, such a situation is blatantly untrue for concrete. Reinforced
concrete structures typically develop, in a stable manner, large cracks, typically reaching 0

over 50 to 90% of the cross section dimension. Likewise, design of good composites or
toughened ceramics requires that there is large stable crack growth before the maximum
load is reached.

The assumptions of Weibull's theory also do not hold for fiber composites and modern
toughened ceramics. In fact, the basic principle in designing stronger and tougher com-

posites and ceramics is to force the damage to remain broadly distributed, thus blunting
and shielding potential large cracks-in other words, achieve concrete-like behavior.

c) Rate Effect and Fatigue

Another crucial aspect was insufficiently understood and unquantified-the rate effect or
time dependence in the development of distributed damage. It was obvious that time
plays at least some role in every type of failure. But physically justified formulations for
distributed damage were lacking.

Numerical analysts recognized in the early 1980's that introduction of rate dependence 0
in the failure development has the effect of regularizing the boundary value problem of
strain softening and preventing spurious mesh sensitivity. Later, however, it was found
that the regularization, which precluded waves of imaginary velocity, is short-lived. Spuri-
ous excessive damage localization and spurious mesh sensitivity develop gradually in time.
The problem is not regularized asymptotically, for infinite times. This showed that de- t
spite of taking time dependence in the evolution of damage into consideration, it was still
necessary to use some sort of a nonlocal model, with a characteristic length. Various ways
of throwing viscosity into the stress-strain relations of plasticity with a degrading yield
limit or other constitutive models were attempted and showed some desirable features.
But there was no physical foundation, no true predictive capability. 0

Related to the time effect is fatigue. The fatigue behavior of quasi-brittle materials
is quite different from metals. They are less sensitive to fatigue, by virtue of blunting
and shielding of potential distinct cracks by large damage zones. But fatigue cannot be
ignored. Yet it was not known how the concept of distributed damage, and the fact that
it inevitably involves a size effect, should impinge on fatigue. 0

d) Micromechanics of Crack Systems

Finally, as for micromechanics of crack systems, major advances have of course been
achieved between 1975 and 1990. However, they were limited to the elastic properties 0
of bodies with macroscopically uniform random systems of distributed cracks or various
types of oriented systems. They did not clarify the effect of growth of cracks during
loading, nor the effect of spatial localization of the cracks, which makes the macroscopic
fields nonuniform.
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For example, the well-known solutions of Budianski and O'Connel, or Budianski and
Hoenig, Kachanov, Ju and others, considered only cracks of fixed length (i.e.. not allowed

- to grow), distributed spatially uniformly over an infinite body. These solutions used var-
ious homogenization methods such as the methods of periodic cells, the self-consistent
method of Hill, the Mori-Tanaka method and other methods for composites. in order to
determine the macroscopic tensor of effective elastic moduli. In the diagram of stress
versus strain, this meant that these previous solutions provided only the secant elastic
moduli. They were incapable of providing information on the tangent elastic moduli,
which can yield a negative softening slope (corresponding to a non-positive definite ma-
terial stiffness matrix).

Thus, there was a serious gap of knowledge: How should the difference between the
secant elastic moeuli and the tangent elastic moduli, caused by the growth of cracks during
loading, be determined?. This difference determines the inelastic stress increments - the
basic characteristic of the macroscopic stress-strain relation for damage.

As for crack interactions, they were taken into account in some of the solutions, how-
ever, only for the case of spatially uniformly distributed cracks. In that case the interac-
tions are simple: they basically cancel each other. The crack interactions in large crack
systems that become macroscopically nonuniform, that is, localize, were not considered
in previous studies. Yet, these are essential for the properties limiting localization of
damage.

Making progress in the foregoing gaps of knowledge, with a thrust on the micro-macro,
was adopted as the goal of the present project.

II Objective of Research Effort

The basic overall objective of the research effort was to develop fundamental understand-
ing of the macro-micro correlation in the phenomena of distributed damage. In detail. the
objectives (which were slightly updated as the research was advancing), were as follows:

1. Principal Objective:

(a) Analyze interactions among growing cracks in large microcrack systems and deduce
a continuum approximation of the discrete relations for the interacting cracks.

2. Further Objectives:

(b) Formulate compression failure of a quasi-brittle material as the propagation of a band
of splitting microcracks.

(c) Determine the macroscopic consequences of softening slip or interface fracture be-
tween fiber and matrix in composites.

(d) Analyze the effect of inclusions such as aggregate pieces or fibers (in the transverse
cross section of a composite) on the microcrack interactions.
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(e) Determine the consequences of the rate-process theory for bond ruptures, governed
by activation energy and Maxwell energy distribution, for the macroscopic rate-
dependent damage or fracture model.

(f) Analyze the effect of distributed cracking in a boundary layer, affecting the strength
and size effect in the bending of beams or plates.

(g) Identify in mathematical terms the limitations of Weibull probabilistic theory of size
effect and damage for the case of quasi-brittle materials, determine the macroscopic
consequences for a probabilistic failure theory, and deduce a rational nonlocal gen-
eralization of the Weibull concept.

(h) Determine the size effect in fatigue of a quasi-brittle material, caused by the existence
of a large zone of distributed cracking.

III Summary of Accomplishments

1. Principal Accomplishment

The principal accomplishment of the project has been the development of a nonlocal
damage model based on micromechanics of crack interactions, described in [1] and applied
to localization analysis in 121 (the idea first presented in [34]).1

Compared to the situation before, this model appears to represent a major break-
through in the continuum modeling of distributed damage. The model considers not only

* stationary cracks but cracks that grow with the process of loading. It relates the growth
of these cracks to the macroscopic continuum stress-strain relation for cracking damage
with strain softening (such as continuum damage mechanics, or plasticity with degrading
yield limit).

The model is based on the discrete matrix relations for the superposition method for
interacting cracks, and utilizes its simplified version due to Kachanov. The classical ho-
mogenization methods could not be used (as they apply only to macroscopically uniform
states of deformation and stress, while main concern is the localizing, nonuniform, and
nonhomogeneous states). So, a new concept for the micro-macro transition had to be
formulated: Find a continuum field equation whose possible discrete approximation co-
incides with the matrix equation governing a system of interacting microcracks. Such a
discrete approximation can be obtained for nonuniform states, which makes the continuum
transition possible.

The result is a new type of nonlocal continuum, described by a Fredholm integral
equation for the unknown nonlocal inelastic stress increments. In contrast to the previous,
heuristic nonlocal formulations, there are two spatial integrals instead of one. One integral.
which is similar to that used in the previous formulations, ensues from the fact that crack
interactions are governed by the average stress over the crack length (rather than the

'The references are listed at the end and the main ones are attached.
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value of the macroscopic stress field at the crack center). This integral can be regarded
as a short-range averaging of the inelastic macro-stresses.

The second integral describes long-range crack interactions. Its kernel is a crack influ-
ence function which has directional and tensorial properties, in contrast to the previous

nonlocal formulations. This influence function is a second-rank tensor and varies with a

directional angle, i.e., is anisotropic. Thus it exhibits sectors of shielding and amplification
(which were missing from previous formulations).

A rather interesting property came out theoretically: for long distances of two in-
teracting cracks, the influence function decays as the inverse square of distance in two

dimensions and as the inverse cube of distance in three dimensions. This decay is of course
similar to long-range interactions in many other physical laws (although in previous for-

mulations the kernel of the spatial integral was assumed to decay as an exponential).
This type of decay implies some interesting properties: The influence function is not in-
tegrable over an infinite space or infinite plane. This means that it is impossible to cause
a homogeneous growth of strain softening damage over an infinite space.

Effective application in finite element codes is made possible by formulating the so-
lution of the discretized integral equation in terms of the Gauss-Seidel iterative method.
The advantage is that this type of solution can be conveniently combined with the normal
iterations of each loading step in a nonlinear finite element code. This greatly simplifies
the handling of the nonlinearity, by allowing the nonlocal inelastic stress increments to be
calculated from the local once explicitly. The calculation of the nonlocal inelastic stress
increments involves evaluation of an integral over the finite elements of the structure,
which contains the crack influence function. For the crack influence function, simplified
closed-form expressions which have asymptotically exact properties for an infinite space 0
as well as for close-range interactions, are derived.

An appealing feature of the new nonlocal formulation is that the constitutive law
becomes strictly local. This avoids difficulties with the unloading criterion or with the
continuity condition of plasticity, which were encountered in previous nonlocal formula-
tions in which the nonlocal spatial integral was part of the constitutive law.

The aforementioned superposition method for interacting cracks is based on decom-
posing a loading step, for example in a finite element program, into two substeps: In the
first step, the cracks are imagined to be temporarily frozen (or glued), that is, prevented
from opening and growing. In the second substeps, these cracks are imagined unfrozen or
unglued. This means that the stress increments transmitted across the previously frozen
cracks must be applied as loads on the crack surfaces, in two opposite directions.

The properties of this new, micromechanically justified nonlocal formulation have been
studied by analyzing localization of strain-softening damage into a planar band [21. To
some extent, they have been explored in finite element calculations (however, this work is
still continuing and a paper has not yet been written). It is found that the new nonlocal
model predicts localization to begin as soon as the local constitutive law deviates from
linearity, which can be already before the peak of the stress-strain diagram. This is a
major difference from the previous models, which indicated localization to occur only
after a certain negative post-peak slope has been exceeded and allowed no localization in
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the pre-peak hardening regime. It was also shown that bifurcations of the equilibrium
path can occur, according to the new formulation, even in the regime of local hardening.
and even in the absence of geometric nonlinearities of buckling.

Although some new interesting questions have arisen and further studies will be neces-
sary, the development of the new nonlocal model appears to represent a major advance in
the understanding and description of the micro-macro correlation of the processes involved
in distributed softening damage due to cracking.

2 Further Accomplishments

2. 1 Distributed damage, interface fracture and size effect in aerospace fiber composites.

The damage in fiber composites, which are important for aerospace applications, has
some particular characteristics due to the anisotropic nature of the material and the
role played by interface fracture. For this reason, tests of geometrically similar notched
specimens of isotropic and cross-ply laminates of carbon fiber-epoxy composites, made
from unidirectionally reinforced plies, were tested for the size effect [3). As might have
been expected from the distributed nature of damage, the size effect is found to be quite
significant and follows approximately the general size effect law for quasi-brittle materials.
The size effect tests yield the basic fracture characteristics, particularly the fracture energy
of the material and the effective length of the fracture process zone (which is related to the
characteristic length of the nonlocal continuum). These results mean that the aerospace
composites should be analyzed as quasi-brittle materials and that size effects due to

* distributed damage should be taken into account.
Furthermore, a simplified anal 'tical solution has been obtained for the pullout of a fiber

from a matrix [4, 19]. It was assumed that the interface stress-slip relationship exhibits
post-peak softening and terminates with a final frictional plateau. This assumption is
commonly made in the analysis of interface behavior in composites, both for fibers in
laminates and for reinforcing bars in concrete. It turned out [4] that the softening interface
slip alone produces a size effect, again approximately following the size effect law for
quasi-brittle materials. From this size effect, the interface stress-slip characteristics can
be identified more easily than from other methods. This is made possible by the simplicity
of the analytical solution, which can be inverted [4].

To exploit this solution, further tests have been conducted on pullout of reinforcing
bars from concrete [5]. In contrast to previous pullout tests, the specimens have been
engineered in such a way that the failure would occur due to interface slip exclusively.
with no cracking around the bar. From such tests 151, the interface stress-slip softening
characteristics have been identified. This is a new method of identifying the interface
properties from experiments. In the limit for very large sizes, obtained by extrapolation
of the test results, the theory makes it also possible to determine the interface fracture
energy.
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2.2 Propagation of a band of splitting microcracks as a mechanism of compression failure

In a homogeneous field of uniaxial compressive stress, cracks parallel to the stress
vector release no energy. Yet they are typically seen to form in that manner. Obvi-
ously there must be other mechanisms which provide transverse tensile stresses on the
microscale. These are no doubt the inhomogeneity of the material and local buckling of
damaged material on the microscale.

A theory of compression failure due to the propagation of a band of splitting microc-
racks has been formulated, taking into account local buckling of microslabs of the material
between adjacent splitting cracks [61. This concept has been applied to the analysis of
failure of circular cavities in a compressive stress field-a problem of importance in many
applications such as boreholes in rock or openings in structural parts. It was shown that in
contrast to the strength-based analysis of compression failures (or plastic limit analysis).
the theory always exhibits a size effect. In the simplest form, the size effect for the failure
stress of a circular opening decreases as the inverse 2/5 power of the opening diameter
[61. The theory has also been applied to the calculation of size effect in the failure of
concrete columns (which would similarly be applicable to the failure of rock walls). The
failure mechanism, according to experiments, has been considered to involve a push-out of
a triangular region limited by an inclined band of splitting microcracks [7J. The predicted
size effect was confirmed experimentally [81 by size effect tests of reduced-scale reinforced
concrete columns. (The current methods, embodied in standards, do not consider any
size effect in compression failures of concrete.)

The foregoing models consider interacting cracks in a homogeneous material. This is
* good enough for graphite epoxy or similar composites. but is a simplification in the case of

concrete, due to the presence of inclusions in the form of hard aggregate pieces. Therefore.
the problem of a body containing both microcracks and inclusions has been analyzed 191.
The analysis has been numerical, using the superposition method for cracks systems,
which was extended to inclusions. It was shown that the inclusions play a significant
role, but they do not alter the qualitative nature of crack interactions. The main rcio of
aggregate is to decide the dominant spacing of the microcracks.

2.3 Identification of macro-fracture characteristics by random particle simulation of
microstructure

The quasi-brittle material behavior can be easily simulated by random particle systems
(discrete element method) in which the interparticle force-displacement relationship ex-
hibits softening. Such a particle system can approximate the microstructure of a material
such as concrete or fiber composite in the transverse cross section. An efficient numerical
scheme has been developed and used to study the correlation of the macroscopic fracture
characteristics to the characteristics of the microstructure, particularly the mean and co-
efficient of variation of interparticle strength, and the mean and coefficient of variation
of microductility (displacement at which the interparticle force is reduced to zero). It
was shown that the macrofracture characteristics can be identified by simulating geomet-
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rically similar specimens of different sizes and exploiting the calculated size effect 1101.
Furthermore, it was shown that regular lattices of particles always exhibit directional bias

V for fracture, even if the strength values are randomized. A method to efficiently generate

random particle systems of prescribed particle size distribution has been formulated [101.

2.4 Nonlocal generalization of probabilistic Weibull theory of random strength

For reasons mentioned before, Weibull probabilistic theory of random strength has
been generalized to a nonlocal form that can be applied to quasi-brittle materials [11, 121.

The classical assumption that the material failure probability is determined, at cording
to Weibull probability distribution, by the local tensile stress has been replaced by the

assumption that it is determined by the average of strain in the neighborhood of a given
point.

It was found that, for small structure sizes, this leads to the same size effect as the
classical Weibull theory, but for large structure sizes the size effect is different and ap-

proaches the deterministic size effect of linear elastic fracture mechanics. The approach
to a deterministic size effect for large sizes is explained by the fact that the size of the

fracture process zone tends to be independent of the structure size when the specimens
are large.

2.6 Rate effect in evolution of damage and fracture

For reasons explained in Section 1, modeling of the rate effect and understanding of

its micromechanics is of paramount importance. In order to eliminate the difficult and
complicating effects of wave propagation, tests have been conducted in the static range,
at loading rates varied over 5 orders of magnitude [13, 14]. The interrelationship of the

loading rate effect and size effect has been experimentally studied for rocks [15] (whose
behavior is similar to ceramics) and concrete.

Aside from the well-known dependence of strength and fracture energy on the loading
rate, several new effects have been found. The fracture specimens of concrete in the post-

peak range exhibit load relaxation, but those of rock do not [13-151. This means that
creep of concrete plays a role in the rate effect. Loading concrete at a faster rate causes
a shift of the size effect closer to linear elastic fracture mechanics, that is, toward a more
brittle behavior. The slower the loading, the higher the brittleness [13-151, which at first
seemed surprising. This is micromechanically explained by relaxation of the stress in the
vicinity of the fracture or damage front, which occurs in concrete due to creep (but not in

rocks, in which this phenomenon is not observed). Another new phenomenon that came
out from experiments was the reversal of softening response to hardening response by a
sudden increase of the loading rate 1161. This is a dramatic effect which can cause that
the second peak is even higher than the previous peak under the previous loading rate

[161.
These phenomena have first been modeled by a simple rate-dependent generalization

of the R-curve approach to quasi-brittle fracture, in which the creep in the specimen was
also taken into account [17]. To obtain a more realistic model based on micromechanics,
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the rupture of bonds in the fracture process zone was analyzed according to the rate-
dprocess theory for thermally activated processes governed by activation energy 113. 181.

Based on Maxwell distribution of kinetic energies of atoms or molecules, a rate-dependent
generalization of the stress-displacement relationship of the cohesive crack model has
been obtained (an equivalent form for the crack band model for distributed cracking then
also follows). This rate-dependent formulation was also applied in a crack-band finite
element analysis of concrete, and it was shown that the aforementioned experimentally
observed phenomena can be simulated [ 181. The generalization of the cohesive crack model
to rate dependence has been formulated in a general way on the basis of compliance
influence functions (Green's functions) [20]. Finally, it was shown that the size effect
curves according to the cohesive crack model can be directly calculated based on eigenvalue
analysis of the maximum load, making integration of the solution for the increase of the
load from zero to the maximum unnecessary. It was shown that the structure size for
which a given relative crack length corresponds to the maximum load is an eigenvalue of
a certain integral equation [20].

As an alternative to the cohesive crack model, a novel approach to simulating fracture
with a crack-tip blunting zone has been formulated by assuming that the cohesive crack is
a superposition of infinitely many linear elastic cracks with infinitely densely distributed
tips and with infinitely small stress intensity factors 121]. This approach is sometimes
advantageous, since it allows exploiting the known solutions of linear elastic fracture
mechanics. The rate effect and creep have also been incorporated in this approach. It
was shown that fracture simulation by such a model can reproduce the size effect observed
in quasi-brittle materials as well as the effects of loading rate [211.

2.7 Fatigue aspects of quasi-brittle fracture

Tests of size effect under fatigue loading have been conducted for geometrically similar
specimens of different sizes, using both normal and high-strength concretes [22, 231. It
was found that fatigue failures also exhibit a size effect, but of a type that deviates from
the well known Paris law for the growth of cracks under cyclic loading, which is known
to apply to metals. The size effect is again found to be transitional, approaching Paris
law for very large sizes. It was also shown that for high-strength concretes the fatigue
behavior is more brittle, with a stronger size effect than for normal concretes.

2.8 Boundary-layer size effect

As pointed out in Section I, in some situations quasi-brittle structures fail at the
initiation of fracture growth from the surface. In that case, the microcracking is not yet
localized at the moment of failure, but it still engenders size effect. This type of size
effect is of a different nature. A simple analytical formulation for this type of size effect,
as manifested in the tests of modulus of rupture for bending, has been formulated and
calibrated by test results [241.

12



2.9 Refinements of microplane model for strain-softening constitutive relations

This constitutive model for damage, developed under a previous AFOSR grant, was
further extended and refined. A new concept of geometric damage was formulated 1251.
This made it possible to separate the effect of a reduction of the effective load-bearing
cross section on planes of various orientations within the material from the stress-strain
relationship for the true stress (stress in the undamaged part of the cross section). This
analysis also provided a rational expression for the damage tensor, as a fourth-rank ten-
sor. Compression failures and cyclic loading failures of concrete have been simulated by
extensions of this model 126, 271.

2.10 Analysis of bifurcations that lead to localization of damage

It was shown that, in direct tensile tests, the tensile strain-softening damage due to
cracking leads to a bifurcation of the equilibrium path such that the specimen must flex
to the side (28, 291.

2.11 Some further related works

Several other studies of localization, nonlocal damage, size effect and other aspects
related to the present project have also been carried out [30-401.

Concluding Remarks

The foregoing diverse results complement the principal accomplishment outlined in Sec-
tion 1. Their common theme is the micro-macro correlation of damage and fracture.
Several types of phenomena arise on the microscale, including microcracking, influence of
inclusions, rate effects in the microcrack growth, probabilistic aspects of the microstruc-
ture, etc. They all need to be taken into account in order to obtain a fully realistic model
based on micromechanics.
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Appendix 1.

Copies of Transparencies from a Lecture
Explaining the Principal Accomplishment

(Section III-1, Ref. [1], [2], [34])
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CONTINUUM MODEL FOR
DAMAGE LOCALIZATION IN
SOLIDS WITH INTERACTING

MICROCRACKS

OUTLINE

1. Historical Overview, Problem Statement

2. New Nonlocal Model Based on Crack Interactions

3. Properties of Smoothed Crack Influence Function

4. Localization in a Layer

5. Size Effect and Applications in Finite Element Analysis
with Microplane Model



STRAIN-SOFTENING

SIOBSERVATIONS

Acoustic emissions

Distributed cracking:

66

Rashid 1967 Scanlan 1972 1973

At first - controversial ... dismissed for violation of
Drucker's postulate, Hadamard's
condition (wave velocity real)

PROBLEMS:

- Mesh objectivity (spurious mesh sensitivity)

dispt. tit

- Energy dissipation converges to zero

- Spurious localization of damage to a zero volume

-- Loss of ellipticity of static problem
" hyperbolicity of wave problem

Same kind of problem occurs for: Nonassociated flow rule
(lack of normality)
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a) False remedy (sidetracking the problem)
Sw continuum damage mechanics

ci= (I - w) T 0 -:K.,-1

T =f(.) /q
"true" stress

b) Partial remedy: Regularization by means of
VISCOSITY (artificial or real)
-- does not work asymptotically

for t-+ o

c) The only general remedy
- some type of NONLOCAL concept

1. Limit the crack band width, hmin (or element size)

... crack band model --

1976, 1979, 1983

2. Nonlocal continuum damage - not ,eirprf C" 1,93
1984, 1987

a) Averaging model (1984) (Nonlocal integral)
b) Gradient models (micropolar plasticity, etc.)

- related (result of Taylor series expansion)

physical Justification of Nonlocality?

- microcracks - but how?
- inclusions, grains? - No
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CURRENT STATUS OF MICROMECHANICS
OF SOFTENING DAMAGE DUE TO

MICROCRACKING OF MATERIALS

Stafe 1. Effective (Secant) Elastic Moduli of Microcracked Solid

- easier, nearly all the studies have so far been limited to this (see e.g. a
review by M. Kachanov, Appl. Mech. Rev. 45(8), 1992, 304-335), but
is less important.

TOPICS STUDIED:
6 .Crack density tensor - anisotropy due to

cracks - crack friction and slip - fluid-
filled cracks - interacting but
statistically uniformly. distributed cracks
(no localization) - (secant) elastic
moduli with or without crack interactions
- self-consistent method, Mori-Tanaka
method, method of effective field -
differential scheme - periodic crack
arrays of various geometries, with

t6 ! f. . 6r shielding and amplification
, -configurations - variational bounds on

" '. r. effective moduli.

ASSUMED THAT:
- . Cracks do not propagatt, during

deformation increment.
2. Cracks remain statistically uniform on

. the macroscale.

LIMITATION:

This can yield only the sccant moduli E.
(but one needs mainly the tangent moduli
Et.
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L .sageunt L Moduli -t PropD atin' Mroska

0,6 hardier, studied very
d /'Elittle but. is much more
Et important.

I•t, ASSUMED:011 / :•Pa90-t°in Cracks do not localize
+6 .due to crack

interactions.

,-.yields only the local
moduli, without the

I .. effect of crack
interactions.

Star3. Tangent Stiffness at Propasting Interalfini
Microcracks with Localization

"- very hard, not studied
so far
but required for realistic
solution!

Interactions of I
proagat cracks

a -ecause a c ange of
._tA IpaC -r stiffness from its local

Y-ale value to a certain

nonlocal value
governing localization

_ ... o of cracking.
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LOCAL AND NONLOCAL MACROSCOPIC
• STRESS-STRAIN RELATIONS

a) Local fomn:

Aa- E: (Ae - Ae") E: Ae - AS (1)

Aa =E:Ac- AS (2)

where AS = inelastic stress increment tensor

b) Pretious nonlocal damage model
(Pijaudier-Cabot & Baiant):

Aa = E: AE-- AS (3)

AS is the nonlocal inelastic stress increment, defined by
spatial averaging:

A-S(x) = Iv a(xj )AS(ý) dV(ý) ] (4)

Iv a(x, ý) dV(ý) = 1 (5)
kernel a(x, •) = nonlocal weight function of mean 1(nor-
malized).



NONLOCALITY CAUSED BY INTER-ACTION OF
GROWING MICROCRACKS: Two substeps:

I. Cracks frozen, stresses due to loads solved.

II. Cracks unfrozen, stresses due to crack tractions solved.

I

METHOD VoltCIZACKS.S

A u.
Att4.

-AS

* Apt r.0IxdLL stral4.l.)

AD =1+ 4
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Normal surface traction due to unfieezing of a crack:

ApA= njASn, (6)

Superposition method (Collins 1963, Datsyshin and Savruk.
1973, Gross 1982, Chudnovsky and Kachanov 1983, Chud-
novsky et al. 1987, Chen 1984, and Horii and Nemat-
Nasser 1985)-Kachanov's (1987) simplification:

Ap (ApA,) + E Au v A ., v ±1, ... N (7),
N 1=

in which' (.) = averaging operator over crack surface;
A /W crack influence coefficients.

~~Maw

AS A~S...
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AVSimplifying hypothesis: Consider at each point only the
Sdominant microcrack oriention, coinciding with the max-

imum principal inelastic macro-stress AP(') (i.e., Mode
I). Denote:

A•v(I) = A(n•:9,n,) = [nui31 ninew - [nOp,,ldjAJ (8)

In terms of macro-stresses:A§.) -N A.A•CIS = (ASM,
-V=l = •(.-- 1 (9)
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NONLOAL CON TINUUM- Fredholm integral equa-
'tion:

A3'1~x~IVJ 1 A(x, (AS(1 )(x)) (10)
Eb

where: (AS(')(x)) = bAS(')(ý)a(x, ý)dV(ý) (11)
A(x~, ,) crack influence function.
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Gauss-Seidel Iteration Method (discrete):

N A A-C(l) []

= (ASO1') + E AC/(= 1, 2, ...N)

4& .(14)
(r+1 efmI)* r

Method of successive approximations (continuum):

,A'~(x)(=) 4 (As(1 )(x)) + k A(x, ) dV(ý) (15)

III
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IC. CRACK VIR'IUENCE FUNCTION A X)
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CRACK INFLUENCE FUNCTION IN TWO DIMEN-
SIONS:

Sk(r)

A(x,•) ) [cos 20 + cos 20 + cos 2(0 + 5) ](16)

where (17)
I _

k(r) ' 0 ...

AI
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Al PeArf
,lFor cracking in all directions: Z J nkim

.A3¶rj(x) ~-(ASjj(x))

Admssibility of uniform stress fields requires (for 2D):

J)ý A(x, C)dV(C) = jmJL R(I A(x, C)rdo) dr =0
(13)
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NEW-NONLOCAL DAMAGE CONCEPT: 17

MICROMECHANICS OF CRACK
SINTERACTIONS

1. Macroscopically n (statistically nonhomo-
geneous) system ofar and growing microcracks-
Kachanov's simplification of suoerposition method.

2. Continuum counterpart: Fredholm integral equation
for nloalnts irmets with Jipi-

e Saint-Venant principle: n - _n

* Kernel = n- n li nnrk li pn: 1)
zero mean, 2) second-rank tensor, 3) directional
dependence, 3) shielding and amplification sectors.

a 2r in 2D, r- 3 in 3D;

0o-space: uniform cracking is nonintegrable!

3. Nonlocal inelastic stress in-
crements in finite element code solved by iterations
in load steps.

4. •e ljut aw local - no problem with unloading
criterion and continuity condition!

5. Localization into a band within a layer: 1) bifurcates
well before load-deflection peak, 2) load-deflection

- peak occurs before stress-strain peak.

6. Nonlocal microplane analysis of fractures dominated
by: mode I, shear & compression-same characteris-
tic length.
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NONLOCAL DAMAGE CONCEPT BASED ON
MICROMECHANICS OF CRACK INTERACTIONS

ZDEN-K P. BAiANT 1 , FELLOW, ASCE

ABSTRACT: A nonlocal continuum model for strain-softening damage is derived by micromechanics

analysis of a macroscopically nonhomogeneous (nonuniform) system of interacting and growing mi-

crocracks, using Kachanov's simplified version of the superposition method. The continuum model is

obtained by seeking a continuum field equation whose possible discrete approximation coincides with

the matrix equation governing a system of interacting microcracks. The result is a Fredholm integral

equation for the unknown nonlocal inelastic stress increments, which involves two spatial integrals.

One integral, which ensues from the fact that crack interactions are governed by the average stress

over the crack length rather than the crack center stress, represents short-range averaging of inelastic

macro-stresses. The kernel of the second integral is the long-range crack influence function which is a

second-rank tensor and varies with directional angle (i.e., is anisotropic), exhibiting sectors of shielding

and amplification. For long distances r, the weight function decays as r-2 in two dimensions and as

r-3 in three dimensions. Application of the Gauss-Seidel iteration method, which can conveniently be

combined with iterations in each loading step of a nonlinear finite element code, simplifies the handling

of the nonlocality by allowing the nonlocal inelastic stress increments to be calculated from the local

ones explicitly. This involves evaluation of an integral containing the crack influence function, for which

closed-form expressions are derived. Because the constitutive law is strictly local, no difficulties arise

with the unloading criterion or the continuity condition of plasticity.

INTRODUCTION

The nonlocal continuum-a concept introduced in elasticity by Eringen (1965, 1966), Kr6ner (1967)

and others (see Basant, 1986)-is a continuum in which the stress at a given point depends not

only on the strain at that point but on the deformation of a certain neighborhood. As is now

generally accepted, finite element analysis of distributed strain-softening damage, including its final

localization into sharp fracture, requires the use of some type of nonlocal continuum (Batant, 1984;

Bafant, Belytschko and Chang, 1984; Batant, 1986). An effective type is the nonlocal damage

concept, in which the local damage or fracturing strain figuring in the incremental stress-strain

relation is replaced by its spatial average (Pijaudier-Cabot and Batant, 1987; Batant and Pijaudier

Cabot, 1988; Batant and Lin, 1988a,b; Balant and Otbolt, 1990, 1992a, 1992b).
'Walter P. Murphy Professor of Civil Engineering, Northwestern University, Evanston, Illinois'60208
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The argument for the nonlocal damage concept has been mainly computational-the need to

AV limit localization of strain-softening damage to zones of nonzero volume. The physical explanation,

1 on the other hand, has been mainly phenomenologic and empirical. Intuitively, it has been expected

that the main source of nonlocality must be the interactions among adjacent microcracks. Certain

micromechanics arguments based on a system of microcracks have been shown to lead to the

nonlocal damage concept (Balant, 1987, 1991). However, interpretation of these arguments for the

purpose of finite element analysis has not been clear. The interactions among the microcracks with

simultaneous crack growth during the loading steps have not been taken into account, and the form

of the spatial integral characterizing the nonlocal continuum has not been physically justified. The

crack interactions have recently been analyzed by Pijaudier-Cabot and Batant (1991), and Ba•ant

and Tabbara (1992). However, the problem of determining the nonlocal continuum approximation

has not been addressed in that context. It will be in this paper (the contents of which have been

summarized at a recent conference; Baiant1992).

A special case of nonlocal continuum models for strain softening, which will not be studied here,

are the gradient models, which can be obtained from a Taylor series expansion of the nonlocal spatial

integral (Baiant, 1984). Much attention has recently been devoted to gradient-dependent plasticity

of micropolar (or Cosserat) type (de Borst, 1990, 1991; de Borst and Sluys, 1991; Mfihlhaus and

0 Aifantis, 1991; Vardoulakis, 1989; Sluys, 1992; and Dietsche and Willam, 1992). These models,

however, have so far been justified by the need to regularize the boundary value problem, while a

physical justification from micromechanics is still lacking. Some microstructural physical arguments

for micropolarity have been offered for sand, but they have been vague and inconclusive.

Important contributions to micromechanics of cracking and damage have been made by Kachanov

(1985, 1990), Chudnovsky et al. (1987), Ju and Lee (1991), Lee and Ju (1991), Ju (1990, 1991),

Krajcinovic and Fonseka (1981), Benveniste et al. (1989) and others; see also the review in Balant

(1986). Most studies have so far been limited to the special problem of determining the effective

elastic moduli of randomly microcracked solids that are on the macroscale in a statistically homo-

geneous state (for an excellent review, see Kachanov, 1992). For this special problem, it has been

possible to apply the homogenization methods for composites, such as Hill's self-consistent model,

methods of periodic cells, methods of composite cylinders or composite spheres, variationally-based 0

bounds such as Hashin-Shtrickman bounds, statistical models for macro-homogeneous crack arrays,

etc.

However, homogenization is not the principal, most difficult issue. Rather, it is the continuum

smearing of damage that is spatially nonuniform (statistically nonhomogeneous). The smearing

must preserve the essential interactions of cracks or other micro-defects that govern localization

2



of strain. This issue cannot be handled by homogenization methods because they apply only

to macroscopically uniform fields. A different type of continuum model is required to handle

localization. Such a model will be proposed in this paper.

Numerical studies with a finite element program are beyond the scope of this paper, but are

already in progress (in collaboration with J. Otbolt, using the microplane constitutive law). The

results -indicate that structural failures dominated by tension, shear or compression can all be

modeled using the same nonlocal material characteristics, especially the same characteristic length.

This has not been possible with the previous nonlocal models.

LOCAL AND NONLOCAL MACROSCOPIC STRESS-STRAIN RELATIONS

Finite element analysis of inelastic solids is generally carried out in small loading steps. For each

of them the local constitutive law may be written in the incremental form

A = E : (Ae - A") = E : A - AS (I)

Here Aa, Ae = increments of the stress and strain tensors, E = fourth-rank tensor of elastic moduli

of uncracked material, Ae" = inelastic strain increment tensor, and AS = inelastic stress increment

tensor. In a nonlocal continuum formulation, Eq. (1) is replaced by

Aa = E : Ae - A3 (2)

A3 is the nonlocal inelastic stress increment tensor, which has been defined in recent works by the

spatial averaging integral:

A3(z) = v a(z, f)AS(C) dV(f) (3)

V = volume of the body; z, f = coordinate vectors; and a(z, C) = given nonlocal weight function.

When AS(x) is a uniform field, Ag(z) = AS(z) must represent a possible solution. Hence the

normalizing condition

L a(z,f) dV(f) = 1 (4)

NONLOCALITY CAUSED BY INTERACTION OF GROWING MICROCRACKS

The main source of post-peak strain-softening is the gradual spread of distributed microcracking.

Accordingly, consider an increment of prescribed loads or boundary displacements for an elastic

solid that contains, at the beginning of the load step, many microcracks numbered as IA - 1, ... N.

On the macroscale, the microcracks are considered to be smeared, as required by a continuum

model. Exploiting the principle of superposition, we may decompose the loading step into two

substeps:

3



I. In the first substep, the cracks (already opened) are imagined temporarily "frozen" (or "filled

- with a glue"), that is, they can neither grow and open wider nor close and shorten. Also,

no new cracks can nucleate. The stress increments, caused by strain increments At and

transmitted across the temporarily frozen (or glued) cracks (I in Fig. 2), are then simply

given by E : At. This is represented by the line segment 13 (Fig. 1) having the slope of the

initial elastic modulus E.

II. In the second substep, the prescribed boundary displacements and loads are held constant,

the cracks are "unfrozen" (or "unglued"), and the stresses transmitted across the cracks are

relaxed. This is equivalent to applying pressures (surface tractions) on the crack faces (II in

Fig. 2). In response to this pressure, the cracks are now allowed to open wider and grow

(remaining critical according to the crack propagation criterion), or to close and shorten.

Also, new cracks are now allowed to nucleate.

If no cracks grew or closed (nor new cracks nucleated), the unfreezing (or unglueing) at prescribed

increments of loads or boundary displacements that cause macro-strain increment At would en-

gender the stress drop T4- down to point 4 on the secant line U" (Fig. 1). The change of state of the

solid would then be calculated by applying the opposite of this stress drop onto the crack surfaces.

* However, when the cracks propagate (and new cracks nucleate), a larger stress drop defined by the

local strain-softening constitutive law and represented by the segment AS = H in Fig. I takes

place. Thus, the normal surface tractions

Ap, = n ,AS~nA, (5)

representing the normal component of tensor AS., must be considered in the second substep as

loads Ap,. that are applied onto the crack surfaces (Fig. 2), the unit normals of which are denoted

as n,. (a product with no product sign denotes here a product of tensors contracted on one index;

often it is written as the dot product, but here we omit the dot). Note also that for mode Hl or

III cracks, a simil equation could in general be written for the tangential tractions on the crack

faces.

Now we introduce two simplifying hypotheses:

1. Although the stress transmitted across each temporarily frozen crack varies along the crack, we

consider only its average, i.e., Ap. is constant along each crack (Fig. 3a). This approximation,

which is crucial for our formulation, was introduced by Kachanov (1985, 1987). He discovered 0'

by numerical calculations that the error is negligible except for the rare case when the distance

between two crack tips is at least an order of magnitude less than their size.
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2. We consider only Mode I crack openings, i.e. neglect the shear modes (modes II and HI).

This is often justified, for instance in materials such as concrete, by a high surface roughness -,

which prevents any significant relative slip of the microcrack faces (the mode II or III relative

displacements that can occur on a macroscopic crack are mainly the result of Mode I openings

of microcracks that are inclined with respect to the macrocrack).

A simple-minded kind of superposition method would be to unfreeze all the cracks, load by

pressure only one crack at a time, and then superpose all the cases (Fig. 2a). In this approach,

the pressure on each crack, Ap 0, would be known. But one would still have to solve a body with

many cracks.

A better kind of superposition method is that adopted by Kachanov (1985, 1987), which was

also used by Datsyshin and Savruk (1973), Gross (1982), Chudnovsky and Kachanov (1983), Chud-

novsky et al. (1987), Chen (1984), and Horii and Nemat-Nasser(1985), and in a displacement

version was introduced already by Collins, 1963. In this kind of superposition, one needs to have

the solution of the given body for the case of only one crack, with all the other cracks considered

frozen (Fig. 2a). The cost to pay for this advantage is that the pressures to be applied at the

cracks are unknown in advance and must be solved. By virtue of Kachanov's approximation, we

apply this kind of superposition to the average crack pressures only. The opening and the stress I
intensity factor of crack u are approximately characterized by the uniform (average) crack pressure

zj5, that acts on a single crack within the given solid that has elastic moduli E and contains no

other crack. This pressure is solved from the superposition relation:

N

(Ap,) + j.Ap, u 1, ..N(6)

(... is the averaging operator over the crack length; A,,, are the crack influence coefficients rep-

resenting the average pressure (Fig. 3a) at the frozen crack 1 caused by a unit uniform pressure p

applied on unfrozen crack v, with all the other cracks being frozen (Fig. 3b); and A,, = 0 because

the summation in (6) must skip v, = p. The reason for the notation for AP, with an overbar instead

of the operator (...) is that the unknown crack pressure is uniform and thus its distribution over the

crack area never needs to be calculated and no averaging of pressure actually needs to be carried

out.

Note that the exact solution requires considering pressures Apj,(z') and Ap(zx') that vary

with coordinate z' along each crack. In numerical analysis, the crack must then be subdivided into

many intervals. This could hardly be reflected on the macroscopic continuum level, but is doubtless

unimportant at that level.
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Substituting (5) into (6), we obtain

J N

S= (A(n.S.n.)) + ZAyA(n.3slu) (7)
L.=-- I

The values of A , are graphically represented in Fig. 1 by the segment AY = 3-. This segment

can be smaller or larger than segment 3'.

Now we adopt a third simplifying hypothesis: In each loading step, the influence of the microc-

racks at macro-continuum point of coordinate vector f upon the microcracks at macro-continuum

point of coordinate vector a is determined only by the dominant microcrack orientation. This

orientation is normal to the unit vector nA of the maximum principal inelastic macro-stress tensor

A3( ) at the location of the center of microcrack P. We use the definition:

A = = Jold (8)

The subscripts 'new' and 'old' denote the values at the beginning and end of the loading step,

respectively. According to this hypothesis, the dominant crack orientation generally rotates from

one loading step to the next. Eq. (7) may now be written as:

N

* -a3 ZA,. A3P = (AS 1 )) 9
v=1

Alternatively, one might assume nm, to approximately coincide with the direction of the maxi-

mum principal strain. Such an approximation is simpler to use in finite element programs. It might

be realistic enough, especially when the elastic strains are relatively small.

When the principal directions of the inelastic stress tensor S do not rotate, the increment

operators A can of course be moved inside each product in (7), i.e. A(n•,-•,n,) = n,,A-•,n,,, etc.

One might wonder whether this should not be done even when these directions rotate (i.e. when n5,

varies), which would correspond to crack orientations being fixed when the cracks begin to form.

But according to the experience with the so-called rotating crack model, empirically verified for

concrete, it is more realistic to assume that the orientation of the dominant cracks rotates with the

principal direction of S.

It might seem we should have taken in the foregoing equations only the positive part of AS,,.

But this is not necessary since the unloading criterion prevents ASS, from being negative.

FIELD EQUATION FOR NONLOCAL CONTINUUM

Now comes the most difficult step. We need to determine the nonlocal field equation for the

macroscopic continuum which represents the continuum counterpart of (9). The homogenization
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theories as known are inapplicable, because they apply only to macroscopically uniform fields while

the nonuniformity of the macroscopic field is the most important aspect for handling localization

problems. The following simple concept is proposed:

The continuum field equation we seek is an equation whose discrete approximation can be written

in the form of the Matriz crack interaction relation (9).

This concept leads us to propose the following field equation for the continuum approximation

of microcrack interactions:

AP)) - IV A(z,f)A31 )(f)dV(f) = (AS(')(z)) (10)

because an approximation of the integral by a sum over the continuum variable values at the crack

centers yields (9). Here we denoted A(Zx,,,) = C6(Al,,)/Vc = crack influence function, V, is a

constant that may be interpreted roughly as the volume per crack, and C is a statistical averaging

operator which yields the average (moving average) over a certain appropriate neighborhood of point

z or f. Such statistical averaging is implied in the macro-continuum smoothing and is inevitable p

because in a random crack array the characteristics of the individual cracks must be expected to

exhibit enormous random scatter.

It must be admitted that the sum in (9) is an unorthodox approximation of the integral from

(10) because the values of the continuum variable are not sampled at certain predetermined points

such as the chosen mesh nodes but are distributed at random, that is, at the microcrack centers.

Another point to note is that (9) is only one of various possible discrete approximations of (10).

Since this approximation is not unique, the uniqueness of (10) as a continuum approximation is

not proven. Therefore, acceptability of (10) will also depend on computational experience (which

has so far been favorable).

When (10) is approximated by finite elements, it is again converted to a matrix form similar

to (9). However, the sum then runs over the integration points of the finite elements. This means I
the crack pressures (or openings) that are translated into the inelastic stress increments are only

sampled at these integration points, in the sense of their density, instead of being represented

individually as in (9). Obviously, such a sampling can preserve only the long-range interactions of

the cracks and the averaging. The individual short-range crack interactions will be lost, but they I

are so random and vast in number that aspiring to represent them in any detail would be futile

anyway.

For macroscopic continuum smearing, the averaging operator (...) over the crack length now :

needs reinterpretation. Because of the randomness of the microcrack distribution, the macro-

continuum variable at point z should represent the spatial average of the effects of all the possible
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microcrack realizations within a neighborhood of point x whose size is roughly equal to the spacing I

of the dominant microcracks (which is in concrete approximately determined by the spacing of the

largest aggregates); hence,

(AS(0)(z)) = ji vS, 1•()a(:'fC)dV(C) (11)

The weight function a(z,f) is analogous to that in (3). It should vanish everywhere outside a

domain of a diameter roughly equal to t. For computational reasons, it seems preferable that

a have a smooth bell shape. Because of randomness of the microcrack distribution, function

a(z,f) may be considered as rotationally symmetric (i.e., same in all directions, or isotropic).

Strictly speaking, the macroscopic averaging domain could be a line segment in the direction of

the dominant microcrack (that is, normal to AS()(z)), or an elongated roughly elliptical domain.

However, using a line segment seems insufficient for preventing damage localization into a line in

the case of a homogeneous uniaxial tension field, and it would also be at variance with the energy

release argument for nonlocality of damage presented in Batant (1987, 1991).

Equation (10) represents a Fredholm integral equation (i.e., an integral equation of the second

kind with a square-integrable kernel) for the unknown ŽS'(z), which corresponds in Fig. I to

the segment 3"5. The inelastic strain increment tensors AS()(z) on the right-hand side, which

U correspond in Fig. 1 to the segment _3-', are calculated from the strain increments using the given

local constitutive law ( for example the microplane model, continuum damage theory, plastic-

fracturing theory, or plasticity with yield limit degradation).

SOME ALTERNATIVE FORMS AND PROPERTIES OF THE CONTINUUM MODEL

The solution of (10) can be written as:

A•O)(Z) = (ASM)(z)) - V K(z, f)(AS(')(f))dV(f) (12)

in which function K(z, f) is the resolvent of the kernel A(z, (). (This resolvent could be calculated

numerically in advance of the nonlocal finite element analysis, but it would not allow a simple

physical interpretation and a closed-form expression.) With the notation

I,,= 6, - Aj, (13)

where 6,, = Kronecker delta, Eq. (9) can be transformed to

(ASM) (14) 0
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The macro-continuum counterpart of this discrete matrix relation is

j #(z,fC)A3ý')(f)dV"(f) -(AS(1)(x))

= jv Asl1 )(C)c~zC)dV(C)

which represents an integral equation of the first kind for the unknown function A3')(0). Obvi-

ously,

%x(= - f) - A(xf) (16)

where 6(z - C) = Dirac delta function in two or three dimensions; indeed, substitution of this

expression into Eq. (15) yields Eq. (10).

Defining the inverse square matrix:

[B.= (17)

we may write the solution of the equation system (14) as

B,,,B,,(AS(')) C,, AS C,=,,\w~A (18)

with a, = a(zA,C). The macro-continuum counterpart of the last equation is

A3")(z) = V B(z,•)(ASM(f)())dV(f) =IV C(zx,)AS(1 )(f)dV(f) (19)

where B(z.,f.) = C(B,,)/V. and C(z,C) = fv B(z,f)a(f,z)dV(C). The kernel B(z, ) repre-

sents the resolvent of the kernel *(z, f) of (15). Furthermore,

B(z, f) = 6(z - f) - K(z, f) (20)

because substitution of this equation into Eq. (19) furnishes Eq. (12). With (19) we have reduced

the nonlocal formulation to the same form as (3) for the previous nonlocal damage formulation

(Pijaudier-Cabot and Balant, 1987; Baiant and Pijaudier-Cabot, 1989; Batant and Otbolt, 1990,

1991, 1992). However, the presence of the Dirac delta function in the last equation makes Eq. (19)

inconvenient for computations. Aside from that, it seems inconvenient to calculate in finite element

codes function B(z, C). Another difference is that the weight function (i.e., the kernel) is anisotropic

(and, in the present simplification, associated solely with the principal inelastic stresses).

Note also that if we would set A(z, C) = 0, the present model would become identical to the

aforementioned previous nonlocal damage model. But this would not be realistic. The interactions

characterized by A(z, C) appear to be essential.

9



Because the nonlocal integral in (22) is additive to the local stress AS, the present nonlocal

model can be imagined as an overlay of two solids that are forced to have equal displacements

at all points: (i) The given solid with all the damage due to cracks, but local behavior (no crack
DI

interactions); and (ii) an overlaid solid that describes crack interactions only. The nonlocal stress

A3 represents the sum of the stresses from both solids. It is the stress that is to be used in

formulating the differential equilibrium equations for the solid.

For the sake of simplicity, we have so far assumed that the influence of point f on point z

depends only on the orientation of the maximum principal inelastic stress at f. Since at C there

might be cracks normal to all the three principal stresses (denoted now by superscripts i 1,2,3

in parentheses), it might be more realistic to consider that each of them separately influences point

z. In that case, Eqs. (9) and (10) can be generalized as follows:

N 3

_ Z A=M V (21)
L'=1 --

3

(- ]. A('j)(', f)A3)(f)dV(f) - (AS(')(z)) (j = 1, 2, 3) (22)
3Vj=1

Similar generalizations can be made in the subsequent equations, too. Note that when the body

is infinite, all the summations or integrations in this paper are assumed to follow a special path

labeled by G, which will be defined in the next section.

The heterogeneity of the material, such as the aggregate in concrete, is not specifically taken

into account in our equations. Although the heterogeneity obviously must influence the nonlo-

cal properties (e.g. Pijaudier-Cabot and Baiant, 1991), this influence is probably secondary to

that of microcracking. The reason is that the pre-peak (hardening) inelastic behavior, in which

microcracking is much less pronounced than after the peak while the heterogeneity is the same,

can be adequately described by a local continuum. The main effect of heterogeneity (such as the

aggregates in concrete, or grains in ceramics) is indirect; it determines the spacing, orientations

and configurations of the microcracks.

ADMISSIBILITY OF UNIFORM INELASTIC STRESS FIELDS

In the previous nonlocal formulations, the requirement that a field of uniform inelastic stress

and damage must represent at least one possible solution led to the normalizing condition (4).

Similarly, we must now require that the homogeneous stress field A•31) - (AS(M)) satisfy (9) and

(10) identically. This yields the conditions that the integral of A(x,f) or the sum of A, over an

infinite body vanish. However, the asymptotic behavior of A(z, f) for r --* oo which will be discussed

later causes this integral or sum to be divergent. Therefore, the conditions must be imposed in a
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special form-the integral in polar coordinates is required to vanish only for a special path, labeled

by 0, in which the angular integration is completed before the limit r -, oo is calculated, that is,1 0 / (12w.
A(z, f)dV()= 1Rmo A(z, f)rd dr = 0 (for 2D)

J A(z, )dV(C) = li 1 1 A(z,&)r2sin9d~dO) dr = 0 (for 3D) (23)
V, R-0, 0

r, 0 are polar coordinates, r, 9, - are spherical coordinates. Furthermore, labeling again by (D

a similar summation path (or sequence) over all the cracks v in an infinite body, the following

discrete condition needs to be also imposed:

ZA,, = 0 (24)

This condition applies only to an array of infinitely many microcracks that are, on the macroscale,

perfectly random and distributed statistically uniformly over an infinite body (or are periodic). By

the same reasoning, for an infinite body we must also have

f K(z, f)dV(f) =0 (25)

f 'I(z, f)dV(f) =J B(--, f)dV(t) =J C(m, C)dV(f) =1; (26)

and in the discrete form

Z m ~=ZEGamL=Z BIA&=ZLCmw (27)

For integration paths in which the radial integration up to r -- oo is carried out before the angular

integration, the foregoing integrals and sums are divergent.

GAUSS-SEIDEL ITERATION APPLIED TO NONLOCAL AVERAGING

For the purpose of finite element analysis, we will now assume that subscripts p and v label the

numerical integration points of finite elements, rather than the individual microcracks. This means

that the microcracks are represented by their mean statistical charactrristics sampled only at the

numerical integration points.

In finite element programs, nonlinearity is typically handled by iterations of the loading steps.

Let us, therefore, examine the iterative solution of (9) or (14), which represents a system of N

linear algebraic equations for N unknowns A3(1) if ASO(1) are given. The matrix of *,,, is in

general nonsymmetric (because the influence of a large crack on a small crack is not the same as the

influence of a small crack on a large crack). This nonsymmetry seems disturbing until one realizes
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that this is so only because of our choice of variables AXI) and (AS(1I), which do not represent

A thermodynamically conjugate pairs of generalized forces and generalized displacements. If (AS,(,,

were expressed in terms of the average crack openings WY, then the equation system resulting from

(9) or (14) would have a matrix which would have to be symmetric (because of Betti's theorem), and

also positive definite (if the body is stable). These are the attributes mathematically required for

convergence of the iterative solution by Gauss-Seidel method (e.g., Rektorys, 1969; Collatz, 1960;

Korn and Korn, 1968; Varga, 1962; Fox, 1965; Strang, 1980). Aside from that, convergence of the

iterative solution of (9) or (14) must also be expected on physical grounds (because it is mechanically

equivalent to the relaxation method, which always converges for stable elastic systems).

In the r-th iteration, the new, improved values of the unknowns, labeled by superscripts (r + 1],

are calculated from the previous values, labeled byra, script (r], either according to the recursive

relations:

+ = (AP.) + Z M (28)
N

A-jI(A+S] (s')+ ,AS, ] (1 = 1,2, ...N) (29)

or according to the recursive relations:

- (Apm) + E A,.A#Y+A',tl] (p = 1,2, ...N) (30)
M=--1 V---A-t-

1)rl]J-1 r1 N3()rA31 ( SM+ AP3 + JA
J (ASA) +E Y E A M (u = 1,2, -N) (31)

10=1- u.•i#+l

Equation (29), also known as the Gauss method or Jacobi method, is normally slightly less efficient

than (31), in which the latest approximations are always used. The values of AS(1) may be used

as the initial values of A3(1)[rl in the first iteration.

It is possible to derive Eq. (28) more directly, rather than from (6). To this end, we note that

the sequence of iterations is identical to a solution by the relaxation method in which one crack after

another is relaxed (i.e. its pressure reduced to zero) while all the other cracks are frozen (which is

a problem with one crack only), as illustrated in Fig. 2b. Each relaxation produces pressure on the

previously relaxed cracks. After relaxing, one by one, all the cracks, the cycle through all the cracks

is repeated again and again. This kind of relaxations is known in mechanics to converge in general

(this was numerically demonstrated for a system of cracks and inclusions by Pijaudier-Cabot and

Batant, 1991). The solution to which the relaxation process converges is obviously that defined

by Eq. (9). Note also that this relaxation argument in fact represents a simple way to prove the

superposition equation (6).
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For structural engineers, it is interesting to note the similarity with the Cross method (moment

distribution method) for elastic frames. Relaxing the pressure at one crack while all the other

microcracks are frozen (glued) is analogous to relaxing one joint in a frame while all the other joints

are held fixed. Repeating this for each joint, and then repeating the cycles of such relaxations of

all the joints, eventually converges to the exact solution of the frame.

The macro-continuum counterpart of the Gauss-Seidel iterative method, which converges to the

solution of the Fredholm integral equation (10), is analogous to (29) and is given by the following

relation for successive approximations (iterations):

( = (.s''(z)) + A(z, f)A3,(,) dV(f) (32)

The discrete approximation of the last relation is the equation that ought to be used in finite

element programs with iterations in each step. We see that the form of averaging is different from

that currently used, given by (3). There are now two additive spatial integrals, one for close-range

averaging of the inelastic stresses from the local constitutive relation and one for long-range crack 0

interactions based on the latest iterates of the inelastic stresses.

In programming, the old iterates need not be stored in the computer memory. So the subscripts

[r] and [r + 1] may be dropped and equations (31) and (32) and may be replaced by the following

assignment statements:

N

- (AS()) + A"AP () = 1,2, ...N) (33)

AP'W1)() •- (AS(')(z)) + v A(z, f )A3P)(f) dV(f) (34)

A strict implementation of Gauss-Seidel iterations suggests programming one iteration loop

for (33) to be contained within another loop for the iterations of the loading step in which the

displacement and strain increments in the structure are solved. However, one common iteration

loop, which is computationally much more efficient, can serve both purposes. Then, of course, the

iteration solution is not exactly the Gauss-Seidel method because the strains are also being updated

during each iteration. There is already some computational experience showing that convergence

can still be achieved.

The common iteration loop has the advantage that it permits the use of the explicit load-

step algorithm for structural analysis. In a loading step of this algorithm, one evaluates in each

iteration at each integration point the elastic stress increments E : Ae and the local inelastic stress 0

increments AS from fixed strains Ae; then one uses (33) to calculate from AS the nonlocal inelastic

stress increments A3 for all the integration points, and solves new nodal displacements and strains
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by elastic structural analysis.

CRACK INFLUENCE FUNCTION

Cracks Far from Boundary in Two-Dimensional Body

By virtue of applying the Gauss-Seidel iterative method, coefficients A. can be obtained from the

stress field of only one pressurized crack in the given elastic solid. In practice, this solid is finite,

and then A,,, should in principle be calculated taking into account the geometry of the body. This

means that for every different body shape and size and every different crack location, a new set of

coefficients A,,, would have to be calculated. This would be a preposterous task.

A simplification is suggested, however, by the decay of stresses with the distance from a pres-

surized crack. For practical purposes, the distance of most cracks from the boundary is such that 0

the interference of the boundary with the stress field of the crack is negligible. So, except for points

near the boundary, this field can be approximately calculated as if the crack were embedded in an

infinite elastic solid.

For the purpose of macro-continuum representation, some aspects of the stress field in an infinite

body underlying the crack influence function A must be preserved while others must be simplified.

Preserved must be the long-range asymptotic form of this field, because the long-range contributions

* to the integral that come from the neighborhood of a remote point f come to point a from nearly

the same direction and nearly the same distance (Fig. 3c). How to handle the close-range fields

of the microcracks is a much more difficult question. Certain aspects must obviously be simplified:

First, it is impossible to represent on the macro-scale the microcracks as finite in size, having (in

two dimensions) two distinct crack tips, and second, the singularities of the stress fields near the

crack tips must be smeared at the macro-level as a nonsingular, bounded field. The fi -ondition

is met by taking the long-range asymptotic field of a crack in infinite elastic solid. This is easy

to derive, as follows.

Consider now a crack in an infinite solid, subjected to uniform pressure a (Fig. 3be). According

to Westergaard's solution (e.g. Broek, 1987; Hellan, 1984),

a,_ = ReZ - y Im Z' - o, a,= ReZ + y Im Z' - a, , r = -y Re Z' (35)

in which oa. and or are the normal stresses, r., is the shear stress, and

Z = az (z2 
- a2) 1 /2 ; z = r e'O (36)

Here 2a = crack length, i2 = -1, Z' = dZ/dZ, and r,¢ = polar coordinates with origin at the crack
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center and angle 0 measured from the crack direction z. For r > a we have the approximation:

z= ---- = a2+. ) =+ a2 e + +... (3T)

From this, we calculate

ReZ = a 1+ a2 cos2 .+ ) Z' = (-az-3+..

Y Im Z' = ua2r sin Im (-r-3e-3i) = -ua2r- 2 sin 0 (- sin 30) (38)

Substituting this into (35) and using the formulas for products of trigonometric functions, we

get the following simple result for the long-range (r > a) asymptotic field:

•4= uk(r) cos40 = k(r) (co20- cos40)

sin 4ý6 - sin 2(3Tw = ok(r) 2 (39)

where k(r) = a 2 /r 2 . Subscripts z, y refer to cartesian coordinates with origin at point • coinciding

with the crack center and axis y normal to the crack; a.. and a., are the normal stresses, r. is

the shear stress; and 0 are polar coordinates with origin at the crack center, with the polar angle

0 measured from axis z. The principal stresses a(1) and a(2) and the first principal stress direction

0(1) are given by:

a(') -ok(r) (cos 24 + sin a(2) = ork(r) cs21- sin 4)(40)

tan24() = -cot30

The foregoing expressions describe the long-range form of function A(z, C). It does not matter

that they have a r-2 singularity at the crack center, because they are invalid for not too large r.

Note that the average of each expression over the circle r = constant is zero, which is in fact a

necessary property.

Function A(z, C) can also be easily determined for small r. As intuitively suggested by Fig. 3d,

the short-range interactions go in all directions and should cancel each other. That this is indeed

so is confirmed by Kachanov's (1992) numerical studies of interactions of randomly generated crack

systems that are uniform over a large body. He found that for such systems the classical assumption

of noninteracting cracks is very good, which means that all the interactions mutually cancel. It

follows that for r -- 0, the function A(z, f) should approach the asymptote A = 0 (Fig. 3g).

For intermediate r, calculation of A(z, C) would need to take into account statistical interac-

tions, which seems very difficult. Therefore, we propose to use a smooth empirical function that

approaches for r -- oo and for r -. 0 the two asymptotic curves we established, as shown in Fig.
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3g. We also know the function must be bounded. The simplest expression to have these properties,

AV which replaces a2/r2 in the foregoing expressions, is

k(r) = r 2 (41)

Here I is an empirical constant that represents the distance to the peak in Fig. 3g. It may be

identified with what has been called the characteristic length of the nonlocal continuum. Probably

its value reflects the dominant spacing of the microcracks, which in turn is determined by size

and spacing of the dominant inhomogeneities such as aggregates in concrete, or grain or crystal

size in ice, ceramics and rocks. It may perhaps be taken equal to the larger of the crack size and

the maximum inhomogeneity (aggregate) size. r is an empirical constant such that d roughly

represents the average or effective crack size a for the macro-continuum (in theory, it seems this

value should be increased during the loading process since the cracks grow).

In the formalism we introduced previously, A(x, f) is a scalar. All the information on the

relative crack orientations is embedded in the values of this function. The principal stress direction

at point f, which can be regarded as the dominant crack direction at that location (Fig. 3e), is

all the directional information needed to calculate the stress components at point z; see (40), in

which r = 11m - f1 = distance between points z and f. The value of A(=,f), needed for (32) or (9),

may be determined as the projection of the stress tensor produced at point z onto the principal

inelastic stress direction at that point. According to Mohr circle: 2A(z,f) = (oa, + v)+ (o+ 1 -

a..) cos 2(tP - 0) - 2r,"y sin 2(ok - 9) in which 0, 0, = angles of the principal inelastic stress directions

at points f, z, respectively, with the line connecting these two points (i.e. with the vector a - f).

Substituting here for , etc., the expressions from (39), one obtains a trigonometric expression

which (as Planas, 1992, pointed out), can be brought by trigonometric transformations to the form:
k(r)

A(z, r)--- [ cos 28 + cos 2fk + cos 2(f + 5) (42)

where 9 = 90* - 4. Note that the function A(z,f) is symmetric. This is of course a necessary

consequence of the fact that the body is elastic.

Two properties contrasting with the previous nonlocal formulations should be noted: (1) the

crack influence function is not axisymmetric (isotropic) but depends on the polar angle (i.e. is P

anisotropic), and (2) it exhibits a shielding sector and an amplification sector. We may define

the amplification sector as the sector in which a., (the same stress component as that applied at

the crack faces) is positive, and the shielding sector as the sector in which or,, is negative. The
P

amplification sector oa _ 0 is, according to (39), given by 0 : 406 where

=b = 55.740° (43)
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The sector in which the volunetric stress o,,+o,, (first stress invariant) is positive is 0 < 450. The

sector in which a,. > 0 is 45 < 22.5* and 0 - 67.5'. The sector in which 2 rma = V., - an 2! 0 is

0<5 45'. The maximum principal stress aM is positive for all angles 4), and the minimum principal

stress a(2) is positive for 0 < 21.4710.

The consequence of the anisotropic nature of the crack influence function is that interactions

between adjacent cracks depend on the direction of damage propagation with respect to the ori-

entation of the maximum principal inelastic stress. In a cracking band that is macroscopically of

mode I (Fig. 4a), propagating in the dominant direction of the microcracks, the microcracks assist

each other in growing because they lie in each other's amplification sectors. In a cracking band that

is macroscopically of mode II (Fig. 4b), the microcracks are mutually in the transition between

their amplification and shielding sectors, and thus interact little. Under compression, a band of

axial splitting cracks may propagate sideways (Fig. 4c), and in that case the microcracks inhibit

each other's growth because they lie in each other's shielding sectors. Different interactions of this

kind probably explain why good fitting of test data with the previous nonlocal microplane model

required using a different material characteristic length for different type of problems (e.g., mode I

fracture specimens versus diagonal shear failure of reinforced beam).

Cracks Far from Boundary in Three-Dimensional Body

The case of three dimensions (3D) is not difficult when the cracks are penny-shaped and the bound-

ary is remote. The stresses around such cracks have been expressed as integrals of Bessel functions

(Sneddon and Lowengrub, 1969; Kassir and Sih, 1975), which are cumbersome for calculations.

Recently, however, Fabrikant (1990) ingeniously derived the following closed-form expressions:

ol + Re a2  a1 - Re a 2  Im a,
o'=X 2 . 2 ' - 2
r.. = Rer., r., =Im?, (44)

in which
2o "

a. = 2(B--D), oi= [(I+2v)B+ D]

2= # 2a al?13  Z2 [a2(61 - 21? + P2) - 514]
aP2  = e _-- (1 -2v + 2) -2

r. = -e i. 2a Z11(a - L4(3+ (45)T 12146

a!3  . a az 2[l• + a 2(2a 2 + 2z 2 - 3p 2)]
B = -2 -arcsinT2 D 113

SL 2 - LI L2 2 +LI 12=2 14,2=-12
2 12 2 13 2 '

L = v/(a - P)2 + z2, L2 =V(a +p)2 + Z2
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in which a = crack radius (Fig. 3f); r,0,0 are the spherical coordinates attached to cartesian

coordinates x, y, x at point 1, with angle 0 measured from axis z which is normal to the crack at

point (; r = distance between points a and f; and p, 0, z are the cylindrical coordinates with origin

at the crack center and p, o as polar coordinates in the crack plane, angle 0 being measured from

axis z.

Since the long-range asymptotic form of the foregoing stress field has not been given, we need

to derive it. For this purpose, one needs to note that, for large r, L, t r - a sin G, L2 :t r + a sin G

(see the meaning of L, and L2 in Fig. 3f), 1i = a sin0,12 = r and, for r > a, arcsin(a/12) •t

[1 + (a 2/612)]a/12, V! a t r[1 - (a 2/2r 2)]. The result is the following long-range asymptotic

field:

a= ok(r) [( +2v) sin2G- + (1- 2-L cosG)sinG]

a" = Gk(r) [(1+2v) (sin2 3)- (1-2v-acos]G)sin2G]

a.. = ak(r) (sin20- 2) (46)

= -ck(r) sin 20 (4 - 5 sin 2 0), 00, = oaO = 0

in which, for three dimensions, k(r) = a3/(7rr 3 ). For the same reasons as those that led to Eq. (41),

this expression may be replaced by
k(r) = 1 ( xr)3(47)

T\r2 +t2

The crack influence function based on (46) satisfies again the condition that its spatial average over

every surface r = constant be zero.

It is important to note that, asymptotically for large distances r, the crack influence function

in three dimensions decays as r-3, whereas in two dimensions it decays as r-2. Again, in contrast

to the previous formulations, the weight function (crack influence function) is not axisymmetric

(isotropic) but depends on the polar or spherical angles (i.e. is anisotropic).

Note again that one can distinguish a shielding sector and an amplification sector. According

to the change of sign of a,, in

Eq. (46), the boundary of these sectors is given by the angle

Ob = arcsin V2/ = 54.7360 (48)

or 900 - = 35.264*. Thus, the amplification sector 9 > Ob is significantly narrower in three than

in two dimensions.
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In the case of a field translationally symmetric in z, one might wonder whether integration over

z might yield the two-dimensional crack influence function. However, this cannot occur because the

two-dimensional crack influence function corresponds in three dimensions to a field of strip cracks

aligned in th z direction, which cannot yield the same properties as the penny-shaped cracks.

Cracks Near Boundary

When the boundary is near, the crack influence function should be obtained by solving the stress

field of a pressurized crack located at a certain distance d from the boundary; Fig. 4d. Obviously,

the function will depend on d as a parameter, i.e., A(z, C, d). Functions A will be different for a

free boundary, fixed boundary (Fig. 4e), sliding boundary, and elastically supported boundary or

interface with another solid. When the crack is near a boundary corner (Fig. 4f), A represents the

solution of the stress field of a pressurized crack in the wedge, and will depend on the distances

form both boundary planes of the wedge. These solutions will be much more complicated than

for a crack in infinite body, and simplifications will be needed. On the other hand, because of the

statistical nature of the crack system, exact solutions of these problems are not needed. Only their

essential feature are.

A crude but simple approach to the boundary effect is to consider the same weight function as

for an infinite solid, protruding outside the given finite body. In the previous nonlocal formulations,

based on the idea of spatial averaging, the same weight function as for the infinite solid has been

used in the spatial integral and the weight function has simply been scaled up (renormalized), so

that the integral of the weight function over the reduced domain would remain 1. In the present

formulation, such scaling would have to be applied to all the weight functions whose integral should P

be 1, i.e. a, 1, B, C. For those weight functions whose integral should vanish, a different scaling

would be needed to take the proximity of the boundary into account; for example, the values at

the boundary should be scaled up so that the spatial integral would always vanish, as indicated in

(23). As a reasonable simplification, this might perhaps be done by replacing the A, values for

the integration points C, of the boundary finite elements by kbA,, where the multiplicative factor

kb is determined from the condition that EN, A,,, = 0 (with the summation carried over all the

points in the given finite body);

interior P boundary v

LONG-RANGE DECAY AND INTEGRABILITY

Consider now an infinite two-dimensional elastic solid in which the stress, strain and cracking are
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macroscopically uniform. All the microcracks are of the same size a, and the area per crack is s2.

A The strss a applied on each microcrack is the same. From (39) we calculate the contribution to

the nonlocal integral from domain V4 outside of a circle of radius R, that is sufficiently large for

permitting the approximation k(r) : a 2 /r 2 ;

((i) +R 2 w cra 2 cos 2 .0 rd odr = a2  i 2 w c os-2 0d 4kdr (50)

+-a. + )V = Rh =R1 0 2r2 2a JWrR, J#=0 r

Now an important observation, to which we already alluded: The last expression is an improper

integral which is divergent (because it is divergent when the integrand is replaced by its absolute

value; see e.g. Rektorys, 1969). This also means that the value of the integral depends on the

integration path. For some path the integral may be convergent, and that path, shown in (50), has

been labeled by E. So we must conclude that a homogeneous AS field, that is, a field of uniform

length increment of all the cracks in an infinite body that is initially in a statistically uniform state,

is impossible.

But this is not all that surprising. As is known from analysis of bifurcation and stable equilib-

rium path, strain-softening damage (which is due to microcrack growth) must localize (e.g. Baiant

and Cedolin, 1991). So in practice the domain of the integrals such as the last one must not be

infinite in two directions. It can only be finite or infinite in one direction only, as is the case for a

* localization band. The basic reason for this situation is that the asymptotic decay r-2, which we p

have obtained, is relatively weak-much weaker than the exponential decay assumed in previous

works (for an exponential decay, the integration domain could be infinite in all directions without

causing this kind of problem).

A similar analysis of uniform damage can be carried out for an infinite three-dimensional solid,

and the conclusion is that the integration domain, that is, the zone of growing microcracks, can

only be finite or infinite in two directions only (a localization layer), but not in three.

A similar divergence of the integral over infinite space has been known to occur in other problems

of physics, for example, in calculation of the stresses from periodically distributed inclusions, or

the light received from infinitely many statistically uniformly distributed stars. For a perspicacious

mathematical study of this type of problem, see Furuhashi, Kinoshita and Mura (1981).

GENERAL FORMULATION: TENSORIAL CRACK INFLUENCE FUNCTION

In Eq. 10, the principal stress orientations at points z and f are reflected in the values of the

scalar function A(z, f). For the purpose of general analysis, however, it seems more convenient

to use a tensorial crack influence function referred to common structural cartesian coordinates

X _ Xi, Y - X2 , Z =- X3, and transform all the inelastic stress tensor components to X, Y, Z.
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The local cartesian coordinates z B Z1, Y 2 Z2,Z 3 Z3 at point f are chosen so that axis y coincide

with the direction of the maximum principal value of the inelastic stress tensor S(f), and axes z _.

and z coincide with the other two principal directions (Fig. 4). Equations (33) and (34) may be

rewritten in common structural coordinates as follows:

N 3

A3'IJ - (iSA ") + X-R(') A(' ) At' (p = 1,2,...N;i= 1,2,3) (51)

- (AStj(a)) + JJ j R (')(x'f),A3())dV(f) (i = 1,2,3) (52)
i=1

in which, similarly to (22), we included the influence of the dominant cracks normal to all the
principal stress direction at each point; R43k(' ) or Vi = circ = fourth-rank coordinate

rotation tensor (programmed as a square matrix when the stress tensors are programmed as column

matrices) at point f or f,; c4, cIj = coefficients of rotation transformation of coordinate axes

(direction cosines of new axes) from local coordinates zi at point f (having in general a different

orientation at each f) to common structural coordinates X 1 (4It = cos(zk, XI), X 1 = cktzk, atJ =

CkICLJaki) ; subscripts 1, J or k, I refer to cartesian components in the common structural coordinates

or in the local coordinates at f; and A,,(,, ) = components of a tensorial discrete or

continuous nonlocal weight function (crack influence function, replacing the scalar function A),

which are equal to 1-2 times the cartesian stress components aki for a = 1 as defined by (39) for

two dimensions, or t-3 times such cartesian components as defined by (46) for three dimensions

(with r = 1iz - fII).

CONSTITUTIVE RELATION AND GRADIENT APPROXIMATION

As is dear from the foregoing exposition, the constitutive relation is defined only locally. It

yields the inelastic stress increment (AS(M)(z)), illustrated by segment 32 shown in Fig. 1. This

contrasts with the previous nonlocal formulations, in which the nonlocal inelastic strain, stress

or damage was part of the constitutive relation. This caused conceptual difficulties as well as

continuity problems with formulating the unloading criterion. Furthermore, in the case of nonlocal

plasticity, this also caused difficulties with the consistency condition for the subsequent loading

surfaces.

Here these difficulties do not arise, because the nonlocal spatial integral is separate from the

constitutive relation. Thus the unloading criterion can, and must, be defined strictly locally. If

plasticity is used to define the local stress-strain relation, the consistency condition of plasticity is

also local.

Recently there has been much interest in limiting localization of cracking by means of the so-
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called gradient models. These models can be looked at as approximations of the nonlocal integral-

p type models, and can be obtained by expanding the nonlocal integral in Taylor series (Batant, 1984).

Unlike the present model, there have been only scant and vague attempts at physical justifications

for the gradient models, especially for aggregate-matrix composites such as concrete. It seems that

the physical justification for the gradient models of such materials must come indirectly, through

the integral-type model. However, if that is the case, the present conclusions signal a problem. If

the spatial integral in (10) were expanded into Taylor series and truncated, the long-range decay of

the type r- 2 or r- 3 could not be preserved. Yet it seems that this decay is for microcrack systems

important. If so, then the gradient approximations are physically unjustified.

CONCLUSIONS

1. The inelastic stress increments correspond to the stresses that the load increment would pro-

duce on the cracks if they were temporarily "frozen" (or "glued"), i.e., prevented from opening and

growing. The nonlocality arises from two sources: (1) crack interactions, which means that appli-

cation of the pressure on the crack surfaces that corresponds to the "unfreezing" (or "unglueing")

of one crack produces stresses on all the other frozen cracks; and (2) averaging of the stresses due to

unfreezing over the crack surface, which is needed because crack interactions depend primarily on

the stress average over the crack surface (or the stress resultant) rather than the stress at the crack

center. The crack interactions (source 1) can be solved by Kachanov's (1987) simplified version of

the superposition method, in which only the average crack pressures are considered.

2. The resulting nonlocal continuum model involves two spatial integrals: One integral, which

corresponds to source (1) and has been absent from previous nonlocal models, is long-range and

has a weight function whose spatial integral is 0; it repretents interactions with remote cracks and

is based on the long-range asymptotic form of the stress field caused by pressurizing one crack

while all the other cracks are frozen. Another integral, corresponding to source (2), is short-range,

involves a weight function whose spatial integral is 1, and represents spatial averaging of the local

inelastic stresses over a domain whose diameter is roughly equal to the spacing of major microcracks

(which is roughly equal to the spacing of large aggregates in concrete).

3. As an approach to continuum smoothing when the macroscopic field is nonuniform, one may

seek a continuum field equation whose possible discrete approximation coincides with the matrix

equation ,overning a system of interacting microcracks.

4. The long-range asymptotic weight function of the nonlocal integral representing crack in-

teractions (source 1) has a separated form which is calculated as the remote stress field of a crack

in infinite body. It decays with distance r from the crack as r-2 in two dimensions and r-3 in
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three dimensions. This long-range decay is much weaker than assumed in previous nonlocal mod-

els. In consequence, the long-range integral diverges when the damage growth in an infinite body

is assumed to be uniform. This means that only the localized growth of damage zones can be

modeled.

5. In contrast to the previous nonlocal formulations, the weight function (crack influence func-

tion) in the long-range integral is a tensor and is not axisymmetric (isotropic). Rather, it depends

on the polar or spherical angle (i.e. is anisotropic), exhibiting sectors of shielding and amplification.

6. When an iterative solution of crack interactions according to the Gauss-Seidel iterative

method is considered, the long-range nonlocal integral based on the crack influence function yields

the nonlocal inelastic stress increments explicitly. This explicit form is suitable for iterative solutions

of the loading steps in nonlinear finite element programs. The nonlocal inelastic stress increments

represent a solution of a tensorial Fredholm integral equation in space, to which the iterations

converge.

7. The constitutive law, in this new formulation, is strictly local. This is a major advantage,

eliminating difficulties with formulating the unloading criterion and the continuity condition, ex-

perienced in the previous nonlocal models in which nonlocal inelastic stresses or strains have been

part of the constitutive relation.
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FIGURE CAPTIONS

Fig. 1 Local and Nonlocal Inelastic Stress Increments During the Loading Step.

Fig. 2 Superposition Method for a Solid with Many Cracks (a, b - two alternatives).

Fig. 3 Crack Interactions of Various Types, Their Radial and Angular Dependences, and Coordi-

nates.

Fig. 4 Cracks Near Boundary and Crack Bands.
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NONLOCAL DAMAGE THEORY BASED ON
MICROMECHANICS OF CRACK INTERACTIONS1

By ZDENtK P. BAtANT2 , F.ASCE

Errata and Addendum

Errata:

"* In the sentence preceding (12), replace the word 'subscript' by the word 'superscript'.

"* In equation (35b), replace or by avy*.

"* In the last sentence of the second paragraph after (40), replace r -- oo by r --+ 0.

Addendum: A rigorous mathematical definition of the continuum crack influence function
A has not been given in the paper. It can be given as folows. Function A(O, ý) represents the
influence of a source crack at z = 0 on a target crack at C. At the macro-continuum point
x = 0 there may or may not be a crack. To idealize the random two-dimensional arrangement
of cracks, we may imagine that the center of the source crack influencing some target crack
can occur randomly, with equal probability, anywhere within the square s x s centered at point
x = 0; s represents the typical spacing of the dominant cracks of length 2a near point x = 0
(in a material such as concrete, s ,: spacing of the largest aggregate pieces. The macroscopic
crack influence function can describe the influence of the source crack only in the average sense.
Therefore, A(0, f) is defined as the mathematical expectation, C, with regard to all the possible
realizations of the source crack center within the square s x s; A(0, t) = (C[o0)(C - x, 77 - 0)
where the operator ( ) represents averaging over length 2a of the target crack at •, and
(ý - z, Y - y) = r = vector from the center z = (z, y) of a source crack to the center - (, ij)
of the target crack. In detail, chosing axis y to be normal to the source crack, we have

A( 1 s=i 12 s1• x, ) -•Z,7_)dzdyda' (53)
(a -, s2 fs12 f -. /2

where a(1) is the principal str 17= (•, ,) caused by a unit uniform pressure applied on the

faces of a crack of length 2a ceiiLted at z = (x, y), as given by equation (40). The last integral,
gives the precise mathematical definition of A. However, the integral seems difficult to evaluate
and unnecessarily complicated. The simple approximation given in the paper on the basis of
the asymptotic properties of this integral appears to be preferable for practical computations.

1J. of Engrg. Mech. ASCE, 120 (3), March 1994,.
2Walter P. Murphy Professor of Civil Engineering and Materials Science, Northwestern University, Evanston,

Illinois 60208.
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LOCALIZATION ANALYSIS
OF NONLOCAL MODEL

BASED ON CRACK INTERACTIONS

MILAN JIRASEK' AND ZDENEK P. BA.ANT 2 , FELLOW ASCE

ABSTRACT.- The conventional nonlocal model, often used as a localization
limiter for continuum-based constitutive laws with strain-softening, has been based
on an isotropic averaging function. It has recently been shown that this type of non-
local averaging leads to a model which cannot satisfactorily reproduce experimental
results for very different test geometries without modifying the value of the char-
acteristic length depending on geometry. A micromechanically based enrichment
of the nonlocal operator by a term taking into account the directional dependence
of crack interactions can be expected to improve the performance of the nonlocal
model. The aim of this paper is to examine this new model in the context of a simple
localization problem reducible to a one-dimensional description. Strain localization
in an infinite layer under plane stress is studied using both the old and the new
nonlocal formulations. The importance of a renormalization of the averaging func-

9 tion in the proximity of a boundary is demonstrated and the differences between
the localization sensitivity of the old and new model are pointed out. In addition
to the detection of bifurcations from an initially uniform state, the stable branch of
the load-displacement diagram is followed using an incremental procedure.

Introduction

As is now widely accepted, continuum modeling of progressive cracking in quasib-
rittle materials such as concrete, rock, tough ceramics or ice, requires constitutive
models that exhibit strain-softening. In the context of standard local constitutive 0
models (in which the stress-strain relationship at one point is not influenced by the
evolution of stress and strain at other points), the presence of strain-softening leads
to serious theoretical as well as numerical deficiencies. The governing differential
equations lose ellipticity (in a static formulation) or hyperbolicity (in a dynamic
formulation) and the problem ceases to be well-posed. These deficiencies manifest
themselves in numerical calculations by spurious mesh sensitivity-strain usually

'Postdoctoral Research Fellow, Northwestern University, Evanston, Illinois 60208; currently
Assistant Professor, Faculty of Civil Engrg., Czech Technical University, Thbkurova 7, 166 29
Prague, Czech Republic.

2Walter P. Murphy Professor of Civil Engineering, Northwestern University, Evanston, Illinois

60208.
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localizes into a narrow band whose width depends on the size of finite elements in
the mesh and converges to zero as the mesh is refined. The corresponding load-
displacement diagram always exhibits snapback for a sufficiently fine mesh and the
total energy dissipated by fracture converges to zero.

To remedy the situation, a device called the localization limiter must be intro-
duced to enforce a finite width of the localization band and a finite energy dissipa-
tion. The localization width is closely related to the so-called characteristic length of
the material determined by the microstructure, e.g., by the size of inhomogeneities.

Several types of localization limiters have been proposed. A wide class of lo-
calization limiters is represented by the nonlocal continuum concept, which was
introduced into continuum mechanics by Eringen (1965, 1966), Kroner (1967),
Eringen and Edelen (1972) and others, and was proposed as a localization lim-
iter by Badant, Belytschko and Chang (1984). An effective nonlocal damage model
was developed by Pijaudier-Cabot and Baiant (1987) and Baiant and Lin (1988).
It bears some resemblance to the crack band model (Baiant and Oh, 1983) and
to the mesh-dependent softening modulus of Pietruszczak and Mr6z (1981). A
differential form of the nonlocal concept (Batant, 1984) was exploited in various
gradient-dependent models (Schreyer and Chen, 1986; Lasry and Belytschko, 1988;
de Borst and Miuhlhaus, 1991). A more refined limiter of this type is the micropolar
continuum (Cosserat and Cosserat, 1909), which was extended to strain-softening
problems by Mfihlhaus and Vardoulakis (1987). A computational model for the
elastoplastic Cosserat continuum was formulated by de Borst and Sluys (1991).
Viscoplastic regularization (Needleman, 1987) limits localization by adding rate-
dependent terms to the constitutive equations.

New Approach to Nonlocal Averaging

One of the most powerful and computationally effective localization limiters is the
concept of nonlocal averaging, first used in strain-softening analysis by Ba~ant
(1984) and Baiant, Belytschko and Chang (1984).

The original version of the nonlocal approach, which was dealing with nonlocal
total strain, led to certain numerical difficulties and resulted into a cumbersome
imbricate structure of the finite element approximation. A substantial increase of
computational efficiency was achieved by later improvements based on the idea that
only the quantities directly associated with strain-softening, such as the damage,
the damage energy release rate or the accumulated plastic strain, should be treated
as nonlocal, while the elastic part of the behavior should remain local. Nonlocal
versions of several constitutive models were successfully implemented into finite el-
ement codes and applied to a variety of problems by Baiant and Pijaudier-Cabot
(1988), Batant and Lin (1988) and Baiant and Oibolt (1990). The nonlocal version
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(Baiant and Otbolt, 1990) of the microplane model (Balant and Prat, 1988) proved
to be particularly efficient for the computer analysis of structures made of quasib-
rittle materials such as concrete. However, it also became clear that the classical
nonlocal concept based on an isotropic weight function has its limitations and does
not allow formulating a model universally applicable to the same material under
different loading conditions. More specifically, it turned out that the values of the

characteristic length required to fit experimental data for very different test geome-
tries are significantly different and therefore cannot be regarded as a true material
parameter. Moreover, the physical meaning of nonlocal averaging was not clear
and theoretically supported, and so the nonlocal concept appeared as an artifice
dictated merely by the need to regularize the governing differential equations.

To overcome these difficulties, a micromechanically based derivation of the non-
local operator has recently been presented (Ba.ant, 1992). This led to certain
modifications of the original approach. Both the original and the new approaches
start from the incremental form of a local constitutive law

A0 = Ct: Af (1)

where Aa, Ac are the increments of the stress and strain tensor and Ct is the
fourth-rank tangential stiffness tensor of the material. The total stress increment is

f decomposed into the elastic and inelastic part:

Au = C, : (AE - AE") = C. : AE - AS (2)

Here, C, denotes the stiffness tensor for unloading, Ac" is the increment of the
inelastic strain tensor and AS the increment of the local inelastic stress tensor.
Equations (1) and (2) can be combined to yield the law relating the local inelastic
stress increment to the strain increment:

AS = (c. - Ct) : AE (3)

In the nonlocal formulation, the elastic stress increment remains unchanged
while the inelastic stress increment AS is replaced by its nonlocal value AS. The
constitutive law is now given by

Ao = C.:AE-AS (4)

where the nonlocal inelastic stress increment is to be computed by applying a certain
nonlocal operator on the local inelastic stress increment derived from the strain in-
crement according to (3). In the previously used nonlocal formulation, this operator
represents weighted averaging over a certain neighborhood:

AS8(x) = 0 @(x, )AS •dý 5
(5)
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The scalar weight function 4(x, ý) depends only on the distance r lix - • be-
tween the "source point" ý and the "effect point" x, and on a parameter called
the characteristic length I of the nonlocal continuum. The usual form of t(x, ý)
has been either a Gaussian distribution function or a bell-shaped function with a
compact support t(x, C) = t0[l - (r/flf)2(r < 1) where to is a normalizing factor
such that fr-. 4$(x, t)dC = 1.

Based on analysis of the equations describing the interaction among microc-
racks in an elastic medium, the following generalization of the nonlocal concept has
recently been derived (Baiant, 1992):

j9)X -O(x, C)AiS(i) ()dC + j~A"x 6JV A(j)(xC) 9) (~d (6)
j=1

where AS(0, i = 1,2,3, are the increments of the principal inelastic stresses and
A('j)(x, C) is the so-called crack influence function. Superscripts (Wi) at A(Pj) indicate
that the value of this function depends not only on the locations of the source point
and the effect point, but also on the orientation of the principal directions at these
points. Analysis of the stress fields in two- and three-dimensional infinite bodies
with a single crack provides us with the asymptotic form of the crack influence
function and shows that this function is decaying as r- 2 in two dimensions and r-3
in three dimensions, in contrast to the much faster decay of the aforementioned av-
eraging function t(x, •). Furthermore, the crack influence function is not isotropic,
i.e. it cannot be reduced to a function of the distance r only. The behavior of A
for small values of r is a statistical problem, cannot be easily derived, and has to
be reasonably approximated. The following form of the crack influence function for
two-dimensional problems has been derived after certain simplifications (Baiant,
1992):

Ax,) [cos 20 + cos20 + cos 2(0 + P) (7)S~212

where
k(r) = lr (8)

(r2 +12 /
The angles 0 and 0 characterize the orientations of two interacting cracks as shown
in Fig. la, and r. is a nondimensional parameter roughly equal to the ratio of the
average crack size and the characteristic length. The orientations 0 and 4 depend
on stress state at each point.

A substantial simplification of Equation (6) can be obtained by taking into
account only the interactions between dominant cracks forming in the planes per-
pendicular to the maximum principal stress;

AS()(x) f *(x, C)AS(')(ý)dC +J A(11)(x, •)Ag()(C)d (9)
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The superscripts (1) and (L") will further be omitted to simplify the notation. Note
that in the continuum description a crack is considered at every point. This is of
course only the continuum smearing. The cracks are in reality discrete (in more
detail, see Batant, 1992).

Simplified One-Dimensional Problem

Behavior of the new nonlocal model in general multidimensional problems can
hardly be treated analytically. It is feasible after implementation in a finite ele-
ment program, but this will be the subject of another paper (Oibolt and Baiant).
The present paper will focus on the basic properties of the new model, which must
be examined first. The most basic property is one-dimensional localization of dam-
age into a straight band, taking place inside an infinite layer of thickness L (Fig. Ib).
For the case of a local continuum in which the localization limiter is introduced as a
lower limit on the band width, as in the crack band model, this problem was treated
in Baiant (1988a) and Baiant and Lin (1989) (see also Ba.ant and Cedolin, 1991,
Sec. 13.3). To make use of the simple expression for the crack influence function
A(x, ý) in two dimensions (in contrast to the much more complicated form for a 3-D
continuum), we will consider a plane stress situation-the dimension of the layer

* in the z-direction is assumed to be so smali that the corresponding normal stress
o, is negligible. On the other hand, the dimension of the layer in the y-direction is
very large and the corresponding normal strain EY is negligible. The layer is loaded
by enforcing a uniform displacement in the x-direction at one of the fixed bound-
aries, which causes an increase of strain E, and a change of stress o.. To simplify
the notation, the subscripts at a. and E, as well as at the corresponding stiffness
coefficients will be dropped. The stiffness coefficients C', Ct and C, (to be defined
later) are to be understood as the components C 1111 (or C..) of the stiffness tensors
C., Ct, Cs, resp., in a local constitutive law describing a plane stress problem.

As the shear strains and stresses are zero, equilibrium in the x-direction requires
o, to be constant, but E. can in general vary as a function of x. Of course, for a
local continuum with a one-to-one relationship between stress and strain, E., would
have to be a constant, too, but the existence of a softening part in the stress-strain
law can lead to strain localization and loss of uniqueness. In a local formulation.
localization would occur right at peak stress and there would be no lower limit
on the width of the possible localization band. As will be shown later, in the
present nonlocal formulation the strain can cease to be constant even before the
peak stress, but a true localization band forms only after the peak and its width
cannot decrease below a certain minimum depending on the ratio of the layer width
and the characteristic length of the model, as well as on the tangential modulus.

With the assumption that all the quantities depend only on one spatial variable



x and that the total stress (and thus also the stress increment) is independent of x,

we can set y = 0 in the basic equations (3), (4) and (9) and rewrite them as

AS(x) = [C.(x) - Ct(X)]AC(x) (10)

Aa = C,,(X)AE(X) - AS(x) 0II)

AS g = jf t(x, 0, t, j))AS(t)d dtd +- A(x, 0 , i7,)A9(t)ddd7 =

= j~ i~(x, t)AS(t)d< + f%' A(z, t)AS(Wdt (12)

where

=X O~,0 , 7d7 A(X' 0 00 jA(x, 0, ý, i)dn (13)

The term that is additional in (9) compared to (5) should vanish in a state of

uniform strain when the local and nonlocal inelastic stresses are identical. It might

therefore be expected that JA-f2 A(x, t)dt = 0 for any value of x. If the integral is

formally transformed to polar coordinates, the integrand is given by a product of a

periodic function of the angular coordinate with zero mean and another function of
the radius, and on this basis the foregoing condition seems to be satisfied. A careful

examination of the definition of A(x, t) however reveals that for large values of r, A

behaves asymptotically as r- 2 in two dimensions and r- 3 in three dimensions, and
so the integral f,,fA(x, y, t, ii)d??dt is not absolutely convergent. Such a problem
with integrability is common to many physical problems formulated in an infinite

domain and is not easy to overcome. Fortunately it disappears when dealing with

real-life finite bodies or with semiinfinite bodies bounded at least in some direction.
This is also the case for the layer studied in this chapter. The limits of integration
in the x-direction are finite and, with this modification, the integral converges but

is not equal to zero.
In the simple situation considered, the directions of the maximum principal

inelastic stress at all points are aligned (Fig. Ib), which implies that 9 = g. With
the notation ( = (x - t)/1, the one-dimensional crack influence function can
expressed as

=ir K2 [4C6+ 6C4 + 1.5(2 +0.25 1(AX = (2 )3/2 -- 41¢1 (14)

A surprising fact is that the resulting function is positive for all values of its argu-

ments (Fig. Ic), which contradicts the intuitively expected property ff. A(x, ý)d =-

0. This is a consequence of the lack of absolute integrability of the original two-

dimensional crack influence function. By some tedious algebraic manipulations
it can be shown that the function in the brackets in (14) decays for large , as
IC-3 + O(C-5), and so the one-dimensional crack influence function is integrable.
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Bifurcation Analysis of Post-Peak Behavior

Formulation of the Problem

Having developed the basic framework of a one-dimensional localization problem,
we now focus on the analysis of a possible bifurcation of the equilibrium path after
reaching the peak stress and entering the softening regime. The local stress-strain
law is assumed to be linear up to the peak, with a constant slope Co, and then to
start decaying with an initial slope C,.

Up to the peak, the tangential stiffness Ct and the unloading stiffness C, are
identical and equal to Co, and thus the local inelastic stress increments given by
(10) vanish at all points of the layer. The basic equation (12) has a trivial solution
AS(x) = 0 and (11) then implies Ae(x) = AI/Co = const., which means that the
strains remain uniform up to the peak. The picture dramatically changes after the
peak stress is reached. A part of the layer can experience further strain increase
accompanied by softening while the rest unloads in an elastic way. The unloading
modC.:,iq C, is still equal to Co at all points of the layer, but the tangential modulus
Ct remains equa' to Co only in the unloading part (denoted by U) and jumps to C,
in the softening region (denoted by S). Equations (10) and (11) can be substituted
into (12) to get a single integral equation for the unknown strain increment Ae(x):

CoAE(x) - Aa f (x, )(Co - CtJ -AE(ý)dý

+ A (x, ý)(Co&E A) - oA) d (15)

So far, we have kept the integration limits at minus and plus infinity. The region
outside the layer can be thought of to be fixed to perfectly rigid clamps which repre-
sent a continuation of the body. So it seems to be natural to set the corresponding
strain and stress increments equal to zero. Moreover, the difference Co - Ct(ý) is
zero for ý lying in the unloading region U and the integrand in the first integral van-
ishes outside the softening region S. After dividing by Co and rearranging, equation
(15) reads

A (\(X) - 1) (16)

where ji 1 - C./Co , A(x) f0A(x, ý)dý. The parameter /z characterizes the
local constitutive law. It is always positive; its values between 0 and I indicate
hardening, it = 1 corresponds to a horizontal yield plateau, and p> 1 to softening.
On the other hand, the type of the global load-displacement diagram is determined
by the sign of the stress increment Au. Naturally, Au > 0 means global hardening,
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Au < 0 global softening and Aa = 0 implies a horizontal yield plateau in the
load-displacement diagram.

In addition to equation (16), an acceptable solution of the problem must satisfy
the loading-unloading criterion

AE(x) 2 0 if x E S, AE(X) _< 0if x E U (17)

This additional condition is exploited to determine the extent of the softening and
unloading region.

When studying the bifurcation problem, the increments of stress and strain are

infinitesimal and AE(x) can change proportionally to An. As this study focuses pri-
marily on the softening behavior, we can look for a strain increment per a unit stress
decrement and normalize it by the initial elastic modulus Co to get a nondimen-
sional quantity e(x) = -CoAe(x)/Aa. In terms of this unknown function, equation
(16) can be rewritten as

fL
is4(x,#)e(ý)dý + 10I A(x, )e(ý)dý - e(x) 1 - A(x) (18)

If we look for solutions that cane exhibit global hardening, we can replace the
definition of e(x) by e(x) = CoA-(x)/Aa and the right hand side of (18) changes
its sign. Finally, the case of no stress change (resulting into a plateau in the load-
displacement diagram) can be treated by setting e(x) = AE(x) and replacing the
right hand side of (18) by zero. The loading-unloading condition is the same for all
the above-mentioned cases:

e(x) Ž!O if x E S, e(x) !5 O if x E U (19)

Discretization of the Problem

To solve equation (18) numerically, one can look for the values eo, el, e2,.., eN of
the unknown function e(x) at a finite number of points x0 = 0, x1 , x 2,... XN =

L. The unknowns can be collected to form a vector (column matrix), e. After
approximating the integrals by sums, the integral equation (18) can be replaced by
a matrix equation

(pF + L - I)e = i - 1 (20)

where F and L are square matrices, I is a vector, I stands for the unit square matrix
and i for the vector with all components equal to 1. The matrix counterpart of the
loading-unloading criterion (17) is then

Se > O, Ue < 0 (21)
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where the diagonal incidence matrices S and U = I - S have zero and unit diagonal 0

elements indicating whether the corresponding point lies in the softening or unload-
ing region. To evaluate the vector I and the matrices F and L in (20), a numerical
quadrature rule must be applied to the integrals in (18).

Solution Strategies 0

As the solution of (20) is subject to (21), it must be constructed in an iterative way.
In a parameter study, when one wants to explore the effect of p on the post-peak
behavior, the softening region S can be chosen in advance and one can then look
for the corresponding value of p:

1. Given S and U, compute the matrices L and F and the vector 1.

2. Make an initial estimate of the parameter p.

3. Assemble (pF + L - I) and i - 1.

4. Solve the system of linear equations (20).

5. Check if the solution e satisfies conditions (21). If it does, output the solution
and stop. If it does not, modify p and go to step 3.

It can be expected that softening will tend to concentrate in a band either
inside the layer or at its boundary. The former situation can be denoted as U-S-U
(unloading band - softening band - unloading band), the latter by S-U (softening
band - unloading band). Another possibility is that all the material softens (denoted
simply by S) or that there ex; A several separate localization bands, e.g. S-U-S or
S-U-S-U. 0

Method of Analysis and Solution for Old Nonlocal Model

Now we need to explain how to construct an admissible solution for a given value
of parameter p, discuss the meaning of the eigenvalues and the character of the
solutions for different localization modes. The computational procedure can be
best illustrated by a simple example. The parameter K is first set to zero, which
means that the two-dimensional crack influence function A(x, ý) defined by (7), (8),
as well as its one-dimensional counterpart A(x, ý) defined by (14), is identically zero
and the old nonlocal formulation is recovered. The matrix L and vector I then
disappear from the equations and (20) takes a special, simpler form

(pF - I)e = i (22)

Fig. 2a shows the strain increment profiles for an assumed localization pattern U-S-
U with the total length of the layer L = 201 and the assumed length of the softening
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region h = 101. The profiles were constructed for a sequence of p values between 0.99

and 1.03 and the loading-unloading criterion was tested for each of them. A solution
satisfies the loading-unloading criterion if it is positive for x1l E (5, 15) and negative
everywhere else. Fig. 2a indicates that for i = 0.99 and p = 1.00, the solution is
negative over the whole layer and it decreases as p grows. Between A = 1.00 and
p = 1.01, the solution jumps to large positive values and then decreases again. The
interval on which it is positive shrinks and at p = 1.02 it only slightly exceeds
the assumed softening interval S = (5, 15). When p reaches 1.03, the interval with
positive strain increments is already inside S. As this transition is continuous, there
must be a value of p between 1.02 and 1.03 for which the loading-unloading criterion
is exactly satisfied. If a function f(A) is defined by assigning to each A the value of
the strain increment at x = 5, a necessary condition to satisfy the loading-unloading
criterion is f(A) = 0. This nonlinear equation can be solved by one of the standard
techniques, e.g. by the secant method or by the Newton method. In the latter
case, the derivative of f is computed numerically using a difference formula. The
graph of f (p) is shown in Fig. 2b and it is clear that once the interval containing
the root and no singularities is located, the iteration process converges without any
problems.

The singular points of f (ji) correspond to the values of p for which the coefficient
matrix (pF - I) is singular, or, equivalently, to the eigenvalues of F-1 . When
increasing p from zero, the first singular value is reached approximately at Ai, =
1.006. At this point, the strain increments jump from large negative to large positive
values (see Fig. 2a). For p < A,1, the function f(p) has only negative values and
the corresponding solutions are not admissible. The first root of f(p) can be found
at P1 = 1.0237 and the corresponding solution is really admissible (it satisfies the
loading-unloading criterion). After the second singular value/22 is passed, another
root can be detected at P2 = 1.0990, but the corresponding solution drops below
zero in a small interval in the middle of the softening band and therefore is not
admissible.

The iterative procedure can be repeated for different sizes of the softening region
and each of the calculations yields one possible post-peak branch for a particular
value of the paramete- p. Several such solutions are depicted in Fig. 3a. More
localized solutions require a higher value of p, i.e. a steeper slope of the descending
part of the local constitutive law. Solutions with a larger softening zone are possible
for smaller values of p, however, p must always be larger than 1, which means that
the local law must exhibit softening (and not hardening or a horizontal plateau).

Other sets of solutions can be constructed for other localization patterns. It
turns out, however, that, for the old nonlocal model with r = 0, the solutions are
invariant with respect to a shift along the x-axis and therefore the S-U localization
profiles have the same shape as the U-S-U profiles and are only shifted to the
boundary. Similarly, the S-U-S profiles can be obtained by moving two identical
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U-S-U profiles to both boundaries (Fig. 3b). This seems to be a deficiency, because

the presence of boundaries would no doubt affect the shape of the localization
profiles and the corresponding values of p. The behavior of the present model can
be understood if one realizes that the softening region is not affected by anything
outside it, because the local inelastic stress increments in the unloading region are
zero and thus they do not contribute to the nonlocal inelastic stress increments,
which can be evaluated from the strain displacements in the softening zone only.
That is why the position of the softening region does not make any difference and
the only important thing is its length. At the same time, the strain increment
profiles evaluated under the assumption of loading only (the S type of localization
pattern) are highly nonuniform, with strain concentration in the middle of the layer

(Fig. 3c). This means that the boundaries repel strain localization.

Renormalized Averaging Function

The picture substantially changes if the averaging function 4'(x, ý) is renormalized 0

in the vicinity of the boundaries. The normalizing condition f7, b(x, ý) d 1
ensures that a uniform local quantity in an infinite body leads to a uniform nonlocal
quantity with the same value. If this property is to be preserved in a finite body,
the integration domain must be changed to the domain of the body V and, instead
of the original averaging function in an infinite body 4(x, o) = 4011 - (r/1)212], a 0
normalized function

4.(x, C l 0(23)fv-t(x, •)dý

must be used.
When the normalized averaging function is implemented, the model is able to

exactly reproduce uniform strain increments and also the shape of the S-U and S-
U-S localization patterns becomes more reasonable (Fig. 3d,e). This formulation is
therefore adopted for the subsequent development.

Due to renormalization, the matrix F assembled under the assumption of loading
everywhere has the property that the sum of its elements in every row is equal to
1 (this is the discrete analog of the integral normalizing condition). This can be
written as Fi = i where i is the previously defined vector with all components equal
to 1. As of course also Ii = i, equation (22) has a solution e = i/(p - 1) for
any is # 1. If i > 1, this solution is admissible and it represents uniform strain 0
increment profiles associated with stress decrements. The corresponding post-peak
branch in the global load-displacement diagram has the same slope as the post-peak
branch in the local constitutive law. If p < 1, the solution is not admissible under
the assumption that stress decreases, however, it is admissible if one assumes that
stress increases. Again, the slope of the global load-displacement diagram is the
same as the slope of the local constitutive law (both are positive and hardening
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occurs). The transition from hardening to softening is given by p = 1 when the
coefficient matrix in (22) becomes singular. But this is perfectly consistent with
the fact that the unknown function e(x) defined by e(x) = -CoAe(x)/1A can be
introduced only if the stress change is not zero. If A# = 0, equation (22) can be
used only if e(x) is replaced directly by AE (x) and the right hand side is set to zero.
The homogeneous set of equations with the singular coefficient matrix F - I has
infinitely many solutions, all of them multiples of the eigenvector i. The physical
meaning is that for a local constitutive law with a horizontal plateau, the strain
increments are uniform and arbitrarily large while the stress does not change at all.

Besides the uniform solution, scvcral other admissible solutions may exist for
the same value of the parameter p, i.e. for the same post-peak slope of the local 0
constitutive law. It can be proven (Baiant, 1988b) that the branch that will be
actually followed by the real system is the one with the steepest descent. All other
branches are unstable in the sense that they can never be followed spontaneously,
unless an additional restriction is imposed on the system (despite the fact that the
points on these branches might be stable states). Stability of different branches
of the global response existing for a given local constitutive law can be evaluated
by introducing a parameter related to the post-peak slope of the load-displacement
diagram. To avoid difficulties with a discontinuity at snapback, the negative inverse
value of the post-peak slope is used as such parameter rather than the slope itself.
It is convenient to introduce a nondimensional compliance parameter

CoA= _ L ° E(x)dx o I L e(x)dx (24)s o = A LAa, f •o d L I

whose values are positive for post-peak softening and negative if snapback occurs;
s = 0 corresponds to a vertical drop in the global load-displacement diagram indi-
cating a loss of stability under displacement control.

It follows from the definition of the compliance parameter s that the actual
branch is that which minimizes s. To study the effect of p on the localization
pattern and on the post-peak slope, the compliance parameter was evaluated for
various types of solutions and plotted against p. Fig. 4 shows such a plot for
r = 0, L = 201 and a renormalized averaging function 0,. It is clear that the
pattern S-U dominates in all situations covered by this plot. This means that the
strain tends to localize into a band at one boundary (the S-U pattern) rather than
into a band in the middle (the U-S-U pattern) or into two symmetric bands at both
boundaries (the S-U-S pattern). The decrease of s with an increasing p indicates
that the post-peak slope of the load-displacement diagram is getting steeper as
the slope of the local constitutive law becomes steeper. At i = .14, s becomes
negative, which corresponds to the occurrence of a snapback. Beyond this limit,
the test cannot be performed in a stable manner by controlling only the relative
displacement of the boundaries.
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It is interesting to check whether localization would occur for all values of p > I,

i.e., whenever the local constitutive law exhibits softening. It turns out that the
localization threshold lies slightly above 1. This threshold is determined by the
solution of the S-U type with the maximum possible localization width h = L =
201. At this extreme width, the S-U localization pattern is in fact identical with
the S pattern denoting loading only. However, the corresponding solutions are

distinct, because the S solutions are uniform while the S-U solution must satisfy
the degenerated loading-unloading condition &E(L) = 0 (the unloading region U"
shrinks to one point). As the matrix F is uniquely determined by the assumption
of loading everywhere, the governing equation

(pF - I)e = i (25)

is the same for both cases. To get two distinct solutions, the coefficient matrix
pF - I must be singular and p is therefore the reciprocal of an eigenvalue of F. As
explained before, the matrix F assembled under the assumption of loading only has
always ýj = 1 as its eigenvalue (and it turns out to be the largest eigenvalue). The
corresponding A, = l/4j is also equal to 1 but then equation (25) has no solution.
This means that for a local constitutive law with a horizontal plateau, the global
response does not exhibit softening. The second largest eigenvalue 42 of F is smaller

* than 1 and its inverse value ji 2 = 1/02 is the critical value of A for which localization
starts. As det(ji 2F - I) = 0, solutions of (25) can be written as

Ie = = i + ai2 (26)

where 62 is the eigenvector of F corresponding to the eigenvalue 0b2 and a is an 0
arbitrary constant. Only solutions with all components nonnegative are admissible
and the one with the last component equal to 0 is the initial solution of the S-U
type. When p is increased, the softening band S ceases to extend over the whole
layer and starts shrinking.

A similar analysis has been performed for other widths of the layer and the effect
of the layer width L as an additional parameter has been investigated. As expected,
narrow layers are less susceptible to localization than wide ones, and higher values
of p are needed to produce results similar to those for wide layers. Three important
characteristics of the localization sensitivity can be defined:

"* A1, = 1 ... transition from global softening to global hardening,

"* p] ... onset of localization,

"* p5 ... snapback, loss of stability.

The values of A1,,A 2 can be determined by an eigenvalue analysis of the matrix
F while p, must be solved for by iteratively looking for the value of p causing the
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compliance parameter s to be zero. The characteristic values A I, A2,p;, are plotted
against the ratio L11 in Fig. 5. Depending on the layer width and the slope of the
local constitutive law, four types of behavior can be distinguished and graphically
represented as four regions in Fig. 5:

* A - global hardening,

* B - global softening without localization, strain increments remain uniform.

e C - localization into a softening band, stable during displacement control,

* D - snapback in the global luad-displacement diagram immediately after peak.
I

Analysis of the New Model

So far, all analyses and considerations have been concerned with the old localization
model characterized by the absence of the additional term based on the crack influ-
ence function. How will the results be affected by the presence of this term in the 0
integral equation (16) or its matrix counterpart (20)? The first striking difference
is that uniform strain increments are no longer possible. This can be easily proven
by substituting Ae(x) = AE = const. into (16), which leads to

(t-I)AE + =A(X) (A - Af) (27) 0SCo= C

As the function A(x) is not constant (due to boundary effect), this equation can
be satisfied only if the expression Ao/CO - AE (multiplying A(x) on the right hand
side) is zero, but then (27) reduces to pAc = 0, which can hold only if u = 0 or
AE = 0. The latter case represents no change at all and can be excluded. Uniform
strain increments are therefore possible only if p = 0, which happens if the local
constitutive law has a linear elastic part. As soon as any nonlinearity occurs, strain
increments become nonuniform. Fig. 6a shows several solutions derived under the
assumption of loading only fbr r = 0.1 and A ranging from 0.979 to 0.985 while
Fig. 6b shows such solutions for t ranging from 1.002 to 1.008.

Again, the roots of the characteristic equation

det(pF + L - I) = 0 (28)

mark important points where the number of admissible solutions or the character of

the solution change. The first characteristic value A, corresponds to the transition
from global hardening to global softening. Between A, and A 2, there is only one
admissible solution for each value of p. This solution is nonuniform but all the points
are softening. At A2, solutions of the S-U type start existing and as their compliance
parameter s is smaller than that of the S type solutions, the actual response follows

14

I



4

the localized branch. In contrast to the old nonlocal model with K = 0, the S

type solution ceases to be admissible at some value of p and it changes into a U-
S-U solution. However, the S type solution is "reborn" at the third characteristic
value A3 along with an S-U-S solution and at some higher value of p it changes
its character again. The compliance parameter is plotted against the parameter
p for the most important localization patterns in Fig. 7. The figure reveals that
the actual solution is of the S-U type for all values of p > Ail. This was the case
for the old nonlocal model, too, but an important difference can be noticed: The
generalized nonlocal model allows strain localization even for A < 1, i.e. even when
the local constitutive law exhibits hardening rather than softening. The hardening
slope must, however, be sufficiently small. This is demonstrated in Fig. 8 (similar
to Fig. 5 for the old model), showing the four different regions as discussed at the
end of the preceding subsection.

Incremental Analysis of the Loading Process

Formulation of the Problem

The previous section was devoted to the analysis of the initial directions of the
9 post-peak branches, assuming a linear behavior up to the peak. Let us proceed to a

more complicated problem-an incremental analysis of the entire stable post-peak
branch, i.e. the branch starting with the lowest value of the compliance parameter
defined previously. Recall that the basic integral equation (18) was derived under
the assumption that the unloading modulus Cu(x) be everywhere equal to the initial
modulus Co and the tangential modulus Ct(x) be equal to the softening modulus C,
in the softening region S and to the initial modulus Co in the unloading region U.
But this is the case only in a uniform state with no damage. After a finite nonuni-
form increment is applied, the values of C.(z) and Ct(x) in general change, except
for one situation-the bilinear local constitutive law with unloading as in plasticity
(by which we mean unloading with the initial slope Co). In this special case, strain
increments grow proportionally to the decreasing stress until the local stress drops
down to zero at the first point of the body. All the other local constitutive laws
require a generalization of equation (18).

The derivation can follow the same line as for the bifurcation analysis but the
moduli must be treated as functions rather than constants. Introducing two auxil-
iary functions

C•,(x) - Ct(z) v(x) CW(x) (29)
Co ' =C-
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the integral equation governing the problem under consideration can be derived:

4(x, t),u(t)e(t)dt + A(x, ý)hi()e(t)dt - v(t)e(z) = 1 - A(x) (30)

The matrix counterpart of (30) can be written in a form similar to (20):

(F$A+ L, - N,,)e = i - 1 (31)

Subscripts JA and , emphasize that the matrices depend on the current values of
the functions p(x), v(x), which are in turn determined by the total strain profile
E(x), the profile of the maximum previously reached strain E,,.(x) and the local
constitutive law. Note that ?-? is a generalized form of (20) but describes the
problem on a different level - as an evolution equation characterizing an entire
branch of the equilibrium path rather than a bifurcation from a given state.

I

Bilinear Local Constitutive Law

As an example, consider a bilinear local constitutive law with damage (unloading to
the origin); Fig. 9a. Let EP be the strain at peak stress and c! the strain at complete
failure. Given the current strain E and the maximum previously reached strain 0
the parameters p, v at the given material point can be evaluated as follows:
1) Virgin loading (E,,. < Ep): it = 0, v = 1

S__•e -•_ __L _ 1
2) Softening (cp _ e6m,. < Ef): p = -e ,' Of )

3) Complete fracture (E! !5 Em,,): JA = 0, v = 0

Note that the unloading region is excluded from the integral containing p(x) and
therefore it is not necessary to make a difference between softening and unloading-
reloading after previous damage (v is the same for both cases).

Typical load-displacement diagrams start by a linear elastic part which exactly
corresponds to the local constitutive law, because in the absence of inelastic stress
increments, the local and nonlocal stress is the same. The load-displacement dia-
gram bifurcates right at peak and, according to the results presented in the previous
section, the actual branch is that which represents localization into a softening band
at one boundary. As the loading continues, the localization band becomes narrower
(Fig. 9d) and the load-displacement diagram becomes steeper (Fig. 10) until a snap-
back occurs.

The global response was followed up to the snapback or even beyond it for layers
of different sizes and for local constitutive laws with different post-peak slopes. As
expected, the global response is more brittle for steeper local post-peak slopes char-
acterized by the ratio CI/Co (Fig. 10a) and for larger relative sizes L1l (Fig. 10b).

1
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Nonlinear Local Constitutive Laws

All the load-displacement diagrams constructea in the previous subsection tend to
snap back, even for small sizes and for small post-peak slopes in the local constitutive
law. The reason is that, as the strain increases, the tangential modulus Ct = C,
remains constant while the unloading modulus C, decreases to zero and so the
parameter 1 - Ct/C,. grows without any bounds. To model long tails in the load-
displacement diagram with a progressively decreasing slope, the local constitutive
law must exhibit a similar type of behavior. One of the simplest examples is given
by a law linear up to the peak with a subsequent exponential decay (Fig. 9d):

Eor=f- iffEPT~ oa=fexp[k6-) ifeŽEp (32)

where k is a nondimensional constant controlling the initial post-peak slope. Large
values of k indicate a steep post-peak slope. Unloading is assumed to follow the
initial slope. This type of a local constitutive law results into a progressive increase
of the width of the localization band (Fig. 9e) and the corresponding global load-
displacement diagrams are quite reasonable (Fig. 1 la).

As the most complex example, let us consider a case when the local constitutive
law is nonlinear even before the peak stress. A simple law of this type is given by
(Fig. 9c):

a = Co0exp (33)

This can be again combined either with unloading to the origin (damage) or unload-
ing with the initial slope (plasticity). The former case is studied here. The incre-
mental solution must begin with zero stress and displacement, and the normalized
load-displacement diagram starts slightly deviating from the local constitutive law
even in the pre-peak range (Fig. lib). The evolution of the total strain profiles is
depicted in (Fig. 9e) (for the law with damage). It is clear that, in the pre-peak
range, the strain at all the points is increasing but not uniformly. Soon after the
peak stress, the solution bifurcates to a stable branch corresponding to localization
in a band at one boundary. The width of the localization band then progressively
increases.

Conclusions

The performance of a new nonlocal model recently proposed by Baiant (1992) has
been tested on the problem of strain localization in a semiinfinite layer, which can
b! reduced to an integral equation for a single unknown function of one variable,
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with an additional loading-unloading condition. The following conclusions about
the localization properties of the model can be drawn:

1. The conventional nonlocal model with an isotropic averaging function without
renormalization cannot capture strain localization at the boundaries. Local-
ized strain profiles are invariant with respect to a shift and not affected by
the proximity of the boundary.

2. With a renormalized averaging function, the conventional nonlocal model
leads to uniform strain increments in the hardening regime and in the soften-
ing regime with a very small post-peak slope. The strain increments localize
into a band at one boundary if the post-peak slope of the local constitutive
law exceeds a certain minimum value, which depends on the size of the layer.
Large post-peak slopes of the local constitutive law result into a snapback.

3. The new nonlocal model, which contains an integral describing the effect of
orientation-dependent crack interactions leads to nonuniform strain profiles
as soon as the local constitutive law deviates from linearity. The global load-
displacement diagram can start softening even before the peak in the local
constitutive law is reached. Similarly, the solution can bifurcate already in
the (locally) hardening regime.

4. The present method of analysis has been used to trace the entire loading
process and study the evolution of the localized strain profiles. Several lo-
cal constitutive laws leading to reasonable shapes of the load-displacement
diagram have been presented.
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Figure 1: a) Orientation angles 6 and •, b) geometry of the infinite layer, c) one-

dimensional crack influence function A(r), d) nonlocal averaging function 4(r).

Figure 2: a) Solutions for different values of p, b) graph of the function f (i)

Figure 3: Admissible solutions: a) U-S-U, b) S-U-S, c) S, d) S-U with renormaliza-
tion, e) S-U-S with renormalization

Figure 4: Compliance parameter for different localization patterns

D

Figure 5: Critical values of p depending on the layer width: a) global picture, b)
magnified

Figure 6: Nonuniform solutions of the S type

Figure 7: Compliance parameter for different localization patterns
I

Figure 8: Critical values of 14 depending on the layer width

Figure 9: a) Bilinear law, b) linear-exponential law, c) exponential law, evolution of 0
the total strain profile for d) bilinear law, e) linear-exponential law, f) exponential
law

Figure 10: Load-displacement diagrams a) for different local post-peak slopes, b) 0
for different sizes

Figure 11: Load-displacement diagram: a) linear-exponential law, b) exponential
law
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Size Effect and Fracture Characterist".'s
of Fiber Composite Laminates

ZdenCk P. Baiant', Zhengzhi Li2 and Isaac M. Daniel3

ABSTRACT. - Measurements of the size effect on the nominal strength of notched

geometrically similar specimens of fiber composite laminates are reported. Teste were made on

graphite-epoxy laminates made of 0.127 mm thick plies, unidirectionally reinforced by carbon

fibers and bonded together by high pressure hot curing. The specimens were rectangular 0

strips of widths 0.25, 0.5. 1 and 2 in. and lengths 1, 2, 4 and 8 in. One set of specimens had

double-edge notches and cross-ply [0/902]. arrangement, and another set of specimens had a

single-sided edge notch and a quasi-isotropic [0/±-45/90]. arrangement. It is found that there

is a significant size effect. It approximately agrees with the size effect law proposed by Balant, I

according to which the curve of the logarithm of nominal strength versus the logarithm of

size represents a smooth transition from a horizontal asymptote corresponding to the strength

criterion (plastic limit analysis) to an inclined asymptote of slope -0.5 corresponding to linear

I elastic fracture mechanics. Optimum fits of the test results by the size effect law are obtained, 0

and the size effect law parameters are then used to identify the material fracture characteristics,

particularly the fracture energy and the effective length of the fracture process zone. Finally,

the R-curves are also identified on the basis of the maximum load data. The results show that

design situations with notches or large initial traction-free cracks require the size effect on the I

nominal strength of fiber composite laminates to be taken into account.

1 Introduction

Fiber composites such as graphite-epoxy laminates made by bonding a number of plies re-

inforced by unidirectional parallel fibers have become an important material in aerospace

and other industries. However the laws governing their failure are far from completely

understood. The material failure criteria used in practice are expressed in terms of the Ip
maximum stress (strength criterion), maximum strain or maximum deviatoric strain en-

ergy (Jones, 1975). However, in mechanics it is now generally well understood that such

1Walter P. Murphy Professor of Civil Engineering and Materials Science, Northwestern University,
Evanston, IL 60208

2Graduate Research Assistant
-Professor of Civil and Mechanical Engineering, Northwestern University



criteria could be adequate only if the material failure were plastic. If the failure process

involves fracturing, the material failure criteria expressed in terms of stresses and strains

must be supplemented by an energy criterion, involving the energy release rate. In other

words, fracture mechanics must be applied.

The necessity of using fracture mechanics is documented by the fact that the load-

displacement diagram in the failure of fiber composite laminates does not exhibit a plastic

yield plateau but a gradual decline of the load with increasing deflection after the peak

load. Such a post-peak decline can be caused only by one of two phenomena: the geomet-

rically nonlinear effects of buckling and the fracture effects. Since the post-peak decline

is observed even in the absence of the former, the latter must be taking place.

If the material failure criterion involves energy, there are some important consequences.

The most important one is the size effect, that is, effect of the characteristic dimension D

of the structure on the nominal strength 0 'N, provided that geometrically similar structures

of different sizes are compared. P

The size effect caused by fracture has recently come to the forefront of attention in the

studies of concrete, rocks, ceramics and other so-called quasibrittle materials, which are

characterized by the existence of a sizable fracture process zone at the tip of a macroscopic

crack. It has been found (Batant, 1984, 1993; Baiant and Kazemi, 1990) that in such P

materials the size effect is transitional between plasticity (for which there is no size effect)

and linear elastic fracture mechanics (for which the size effect is as strong as possible).

Thus the plot of log oN versus log D is a smooth curve approaching at very small sizes

a horizontal asymptote corresponding to plasticity and at very large sizes an inclined 10

asymptote of slope -0.5 corresponding to linear elastic fracture mechanics. Such a size

effect must generally occur whenever the load-deflection diagram does not have a yield

plateau after the maximum load is reached, provided that the geometrically nonlinear

effects of buckling are absent. Therefore, a size effect of this type should be expected P

also for fiber composite laminates. The purpose of this paper is to verify this proposition,

describe the size effect quantitatively and exploit measurements of the size effect for

determining the material fracture characteristics.

Fracture of fiber composite laminates has already been studied and some important i

results have been obtained: see for example Cruse (1973). He attempted to predict the

fracture energy of a multi-ply laminate, Gf, as the sum of the fracture energies G of all the

individual angle-plies, that is, Gfh = E, Gk hi where h = thickness of the laminate, h, =

thicknesses of the individual plies. An equivalent summation of the squares of the stress P

2
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intensity factors has also been proposed by Mandell et al. (1975). Based on linear elastic

fracture mechanics, Whitney and Nuismer (1974) proposed two fracture criteria for fiber 0

composiee laminates, formulated in terms of stress and utilizing the energy release rate

calculated by anisotropic elasticity. They called these criteria the equivalent point stress

and the average stress criteria. To take into account the effect of a finite fracture pro-

cess zone, they replaced the actual crack length by an extended equivalent crack length, 0

which is an approach also used for other materials such as concrete (Nallathambi and

Karihaloo, 1986). They found that a constant crack length extension allowed good fits of

all their data for different crack lengths (however, for other materials such a simplifica-

tion was found to be inadequate). They also translated their test results into an R-curve

(resistance curve), describing the dependence of the apparent stress intensity factor on

the crack length. Mandell et al. (1975) observed the damage zone at the crack tip in

fiber composite laminates and found that the microcracks (also called the subcracks) in

this damage zone (fracture process zone) extend parallel to the fibers in each ply or cause

delamination between the plies. They found that the intensity of this microcracking is

linearly proportional to the square of the stress intensity factor, which means propor-

tional to the fracture energy, for a given composite lay-up configuration and ply stacking
arrangement. Mandell et al. correctly pointed out that the microcracking zone plays

the same role as plastic flow in metals, relaxing the high local stress concentrations and

absorbing the energy release due to fracture propagation. They also observed some cracks

to extend through the whole laminate thickness just before failure.

Daniel (1978, 1982, 1985) investigated cracks in typical aerospace graphite-epoxy lami- .

inates and found the size of the damage zone at the tip of the notch or at a small hole to

be about 3 to 5 mm. These observations revealed the existence of a characteristic length

in this composite material. Daniel then applied the concept of equivalent crack length

and obtained a good fit of his experimental results with a modified crack length, with the 0

apparent stress intensity factor being almost constant, for the range of his data. However,

based on analogy with extensive studies of concrete fracture (ACI Committee 446, 1992),

a good description of a very broad range of test data requires not only replacing the

actual crack length with some equivalent extended crack length but also considering the 0

critical energy release rate to depend on this equivalent crack length, that is introduce an

R-curve.

From the studies of Daniel (1982) and others it became clear that failure of a fiber

composite laminate involves a combination of several microscopic failure mechanisms,

3
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including microcracking (subcracks), delamination, matrix splitting, fiber pullout and

fiber breakage. Thus a detailed theoretical macroscopic fracture model would have to be

based on fracture mechanics.

2 Fracture Tests of Composite Laminates

The composite consisted of sheets of epoxy unidirectionally reinforced with graphite (IM7)

fibers. The laminate was produced from commercially available sheets (the individual
plies) by the procedure described by Daniel et al. (1993). The temperature and pressure
history used in curing of the laminate is described in Fig. 1. The cross section of one
unidirectionally reinforced sheet (ply) is shown in Fig. 2. (where the white circle is

the cross-section of fiber which is about 0.004 mm in diameter). Each unidirectionally
reinforced ply has the following properties: Young's modulus El in fiber direction =

24,500 ksi (168.9 GPa), Young's modulus E2 in transverse direction = 1,360 ksi (9.38
GPa), tensile strength in fiber direction Fig = 321 ksi (2.21 GPa), transverse tensile

strength Ft = 9.4 ksi (0.0648 GPa), Poisson ratio v12= 0.30, elastic shear modulus G12 =

1,400 ksi ( 9.65 GPa), thickness of a single ply h1= 0.005 in. (0.127 mm), and fiber-volume

ratio F1 = 0.65.

Two sets of specimens were prepared, with different lay-ups: (0/9021, (cross-ply) and

[0/ ± 45/90]. (quasi-isotropic). Each set involved geometrically similar rectangular speci-

mens of four different sizes: 0.25 in. x 1 in., 0.5 in. x 2 in., 1 in. x 4 in., and 2 in. x 8 in.,
and thus the size ratio was 1:2:4:8. All the specimens were prepared with glass-fiber tabs
of 1.5 in at each end (Fig. 3). The total thickness of the cross-ply laminates was 0.03 in. 0

(0.762 mm), and that of quasi-isotropic laminates was 0.04 in. (1.02 mm). For the first
set of specimens, representing cross-ply laminates, two geometrically similar edge notches,

with lengths a and 2a/D = 1/8, were cut (Fig. 3). In the second set of specimens, made
of quasi-isotropic laminates, edge notches of a/D = 1/5 were cut from only one side (Fig.

3).

The notched laminate specimens were tested under direct tension. The tests were

carried out in the Instron 8500 testing machine (Fig. 2c). The tests were controlled
to a constant displacement rate, by the machine stroke for the double edge notched

specimens, and by the crack opening displacement for the single edge notched specimens.

The displacement rate in the tests was set to different values to make the strain rate
= 0.2%/min. and to reach the peak load within about 10 min. for all sizes. Fig. 4
shows some typical load displacement curves for specimens of various sizes. For the large
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specimen size, they are almost straight up to the failure, which indicates high brittleness.

For the small specimen sizes, there is a significant nonlinear segment before the peak,
which indicates hardening inelastic behavior and lower brittleness (or higher ductility).
This behavior agrees with the fact that the size effect law represents a transition from

ductile response for small sizes to brittle response for large sizes.

The machine stiffness and controls were not sufficient to control the test in the post-
peak regime of descending load, even when the crack opening displacement was controled

(a stable post-peak test might possibly be obtained for notched bending specimens, Wis-

nom, 1992; but such tests are harder to carry out for thin laminates). The failures of the
specimens were catastrophic (dynamic), and occurred shortly after the peak load. Growth
of damage consisting of subcracks in layers and delamination between layers before failure
was observed in the tests (in agreement with the observations of Mandell et al., 1975).

The typical appearance of the specimens after failure is shown in Fig. 5, where the mi-
crocracking damage can be detected. For the quasi-isotropic specimens, some fractures
run at 450 inclination to the notch and there are 450 subcracks.

The test results for the double-edge and single-edge notched specimens are summarized
in Table 1, in which the nominal strength is defined as the average stress in an unnotched

0 cross section, aN = P,,1/hD; D = characteristic dimension (0.5--2.0 in.), and h =
laminate thickness (0.03 in. for the cross-ply laminate and 0.04 in. for the quasi-isotropic

laminate, respectively).
It may be noted that the double-edge notched specimen has one undesirable feature:

the response path exhibits a bifurcation after which only one of the two curves can prop-
agate (Bagant and Tabbara, 1990), and the response thus becomes nonsymmetric. This

property however does not invalidate the foregoing procedure because the bifurcation
happens only after the peak load. Nevertheless, the post-peak data from such tests are
difficult to interpret. It was for this reason that the second series of tests used single-edge

notched specimens. In that kind of specimen there is no bifurcation of the response path

and the response is nonsymmetric from the beginning.

3 Observed Size Effect

The effect of structure size D on the nominal strength aN in quasibrittle materials gen-
erally follows the approximate size effect law (Batant, 1984, 1993):

N -- Bf.(l +p)-,2, f= DIDo (1)

5
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in which • = relative size, fM = reference strength of the material, introduced for the
convenience of dimensionality, and B, Do = constants. B characterizes the solution ac- 9
cording to plastic limit analysis based on the strength concept. The curves in Fig. 6-
7 show the plots of (1) in double logarithmic scales. These size effect plots represent a
transition from the strength criterion (plastic limit analysis), representing a horizontal
left-side asymptote, to an asymptote of slope -0.5, representing linear elastic fracture
mechanics (LEFM). Intersection of the two asymptotes corresponds to D = Do, called

the transitional size.
The size effect law (1) has been verified by numerous tests, especially for concrete,

but also for rocks, toughened ceramics and ice. The formula (1) has been derived, under
certain reasonable simplifying assumptions, by dimensional analysis and similitude argu-
ments, and for some simple specimen shapes also by energy release analysis. It has also
been shown that (1) represents the limiting case of a more general statistical Weibull-type
theory for the size effect, in which the material failure probability is considered to depend
on the average strain of a certain characteristic volume of the material rather than the
stress at the same point (Balant and Xi, 1991c). It has been shown that the predictions
of finite element codes with a nonlinear fracture model (such as the cohesive crack model)
or with a nonlocal damage material model agree well with (1). Furthermore, fracture
simulations by random particle models also agree with this law.

In regard to the statistical approach to the size effect, the recent study by Jackson et al.
(1992) of the size effect in tensile and flexural tests of graphite-epoxy composites deserves
mention. Geometrically similar specimens of sizes 1:2:3:4 were used and the results were
analyzed on the basis of Weibull's statistical theory of random material strength. Good
agreement with the test data was obtained. However, it should be pointed out that
Weibull statistical theory can be applied only to failures that occur at crack initiation.
The reason is that, in the classical form of this theory, the failure probability is considered
to depend on the local stress, calculated from elasticity, and the stress redistributions and
stress concentrations caused by prior fracture growth are disregarded. These phenomena

make Weibull-type theories inapplicable to failures that occur after a large stable crack
growth, which is in the present case simulated by the geometrically similar notches (see
Batant, Xi and Reid, 1991b). In that case, the aforementioned nonlocal generalization of
the Weibull approach is required, and in the limit this leads to (1).

Comparisons of the present tests results to the size effect law for the cross-ply and
quasi-isotropic laminates are shown in Figs. 6-7. The circular points represent the results /

6
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for the nominal strength in the individual tests. The top of each figure shows a linear

regression plot of Y versus X, based on the relations

Y = A+CX, Y=(1/olqN)2 , X=D, Bf,,-1/v/A, Do= A/C

By means of this linear regression, the parameters of the size effect can be easily identified

from the slope C and the vertical intercept A. The resulting size effect plots of log rN

versus log D are plotted in Figs. 6-7. The parameters for these plots are Do = 1.223 in.

(31 mm), Bf, = 127.1 ksi (0.876 GPa) for the cross-ply laminates, and Do = 4.16 in.

(105.6 mm) and Bf,. = 84,3 ksi (0.581 GPa) for the quasi-isotropic laminates.

To sum up, the test results in Figs. 6-7 show that: (1) the failure of fiber composite

laminates containing traction-free cracks (or notches) exhibits a significant size effect,

and that (2) the size effect represents a gradual transition with increasing size from the

strength criterion to linear elastic fracture mechanics, as described by the size effect (1).

The scatter of the test results is of course significant, but is normal for this kind of

heterogeneous material. The foregoing conclusions are verified on the average, as the

mean statistical trend. These conclusions ought to be taken into account in all design
situations and safety evaluations where a large traction-free crack can grow in a stable

manner prior to the failure. Especially, these conclusions are important for extrapolation
from small-scale laboratory tests to real size aerospace or other structures. The strength

theory, which has no size effect, is for these applications inadequate.

4 Identification of Material Fracture Characteristics from
Measured Size Effect

The size effect law (1) for quasibrittle fracture can also be expressed in terms of the

nondimensionalized energy release rate g(a);

aN = C,. (2)
c 9'(ao)c 

1 + g(ao)D 
/ 2

Here c! is a constant representing the effective length of the fracture process zone defined

for extrapolation to infinite size, ao is teh initial value of a when a = ao, and c, =

coefficient introduced for convenience, in order to make UrN coincide with the actual stress

at the desired point of the specimen; g(a) = G(a)(EDh/P)2/b (where G(a) = energy

release rate per unit width of crack front edge, P = external load, E = Young's modulus,
h = thickness, D = specimen width, a = a/b, b = D for single-edge-notch specimen, and

7



b - D/2 for double-edge-notch specimen), see Badant et al. (1991).. By matching (2)

and (1), one obtains (Batant and Kazemi, 1990, 1991; Badant et al., 1991):

(Bf = )Dog(ao), Ci = ((3)) D(

c2. Eg'(ao)

The fracture energy is here defined as the energy required for fracture propagation in

a specimen of theoretically infinite size (Badant and Pfeiffer 1987). According to this

definition, the fracture energy is independent of both the shape and size of the specimen

because in a specimen of infinite size the fracture process zone occupies an infinitely small

portion of the specimen volume and can be considered as a point, which means that linear

elastic fracture mechanics applies.

To determine the material fracture characteristic on the basis of (3), the expressions

for the stress intensity factor K1 available for isotropic specimens (e.g. Tada, 1985) have

been used. The assumption of isotropy is quite good for the quasi-isotropic laminates, but

may involve a larger error for the cross-ply laminates (this should be checked in subsequent

study). According to LEFM,

K, = OvTrF(lc), a = a/b (4)

where af = rN = average stress in the laminate strip and F is a function of variable a.

The cross-ply laminate is not isotropic but orthotropic. The energy release rate and

the stress intensity factor for orthotropic specimens of the present geometry have recently

been solved by Bao et al. (1991). Their solution uses elastic parameters:
I

2X E.
S G2 ,(5)

where E,, Ev, Gv, v,, v... are the elastic constants of the orthotropic material, which can

be calculated from the lamina properties (Jones, 1975). The stress intensity factor can

be written as:

K1 = V7'rKY(p)F(a), (6)

where Y(p) = [I + 0.1(p- 1)- 0.016(p - 1)2 + 0.002(p- _1)(] -. /

F(a) is the same function of the relative crack length a = a/b as for isotropic materials.

Y(p) is a material constant. The energy release rate for orthotropic material is:

G(a) (7)



Bringing (7) into (7), one can write G(a) in the same form as for the isotropic materials:
G~)= K13 •20,2b ~ I p 2 b |f

G(=) = EP -)g(o) (8)

where E, = 1 2YE. EvvI+p

and g(a) is the nondimensionalized energy release rate defined before. By virtue of (9), we
can treat the orthotropic material fracture characteristics in the same way as the isotropic

ones if we replace E by the equivalent Young's modulus E" (E* = 6983 ksi =48.15 GPa

for the cross-ply specimen tested).

For the double-edge-notched specimen (Tada, 1985):

4 ý2
F(o) 1 + 0.122 cos 4 -- tan - (9)

and for the single-edge notched specimen:

F(a) = 1.122 - 0.231o + 10.55a2 - 21.7103 + 30.38a4 (10)

Noting that K2 = GE where G = energy release rate and E = Young's elastic modulus,
* we have g(a) = ra[F(fl )]2. So we have, for the double-edge-notched specimen 0

/ 10' 2 o
g(a) = 2 1+0.122cos4 otan- (11)

4 (r), = 2 2t2 , 4o12
9'(a(1 = I+ a ) (I + 0.l122 cos -. )-0.244 sin2  ~ + 0-122cos'

where, for a = 0.125, g(0.125) = 0.492716, and g'(0.125) = 3.91995. For the single-edge

notched specimens:

g(o) = ir[1.122 - 0.231o + 10.55a2 - 21.71o3 + 30.3804]2 (12)

g'(a) = r[1.259 - 1.037o + 71.18Q2 - 214.4oC3 + 947.5a4]

where, for a = 0.2, we have g(0.2) = 1.184,g'(0.2) = 11.624. Thus, the for double-edge

notched cross-ply laminates we obtain from (3) the effective fracture characteristics:

G! = 1.39 ksi x in. = 0.243 MJ/m 2, c= = 0.154 in. = 3.91 mm (13)

Because of orthotropic, these values apply only for fracture in the x-direction of or-

thotropy. For the singe-edge notched quasiisotropic laminates we obtain:

G! = 3.67 ksi x in. = 0.642 MJ/m 2, c= 0.424 in. = 10.76 mm (14)

9
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It is noteworthy that the effective length of the process zone, cf, found from these size effect

measurements is quite close to that experimentally derived by Daniel (1985) (the present

values are a little larger, which is not surprising considering that Daniel's procedure did

not consider extrapolation to infinite size).

Based on the size effect law, the R-curve can be determined as the envelope of the

fracture equilibrium curves for geometrically similar specimens of different sizes. This

leads to the equations

,(4) c c g'(C'O) g(a)R(c) Gg(0c' c = G, + ro/ (15) '
9'(0o) Cf Cf 9(_Qa) (g'(Q) (5

in v;hich R(c) represents the R-curve. These two equations define the R-curve parametri-

cally; for any chosen value of relative crack length ct, one first evaluates the crack extension

from the notch, c, and then the R-value. The R-curve calculated from the present test

results is shown in Fig. 8 for both the cross-ply laminate and the quasi-isotropic laminate.

5 Conclusions

1. The present tests show that the nominal strength of fiber composite laminate speci-
mens that are geometrically similar and have geometrically similar notches or initial

traction-free cracks exhibits a significant size effect.

2. The size effect agrees with the size effect law proposed by Balant, according to

which the curve of the logarithm of nominal strength versus the logarithm of char-

acteristic dimension (size) exhibits a smooth transition from a horizontal asymptote

corresponding to the strength criterion (plastic limit analysis) to an inclined asymp-

tote of slope -0.5, corresponding to linear elastic fracture mechanics.

3. Measurements of the size effect on the nominal strength can be exploited for de-

termining the fracture characteristics of fiber composite laminates, including their

fracture energy and the effective length of the fracture process zone. From these
characteristics, the R-curve can be also calculated. The size effect method of mea-

suring the fracture characteristics is easier to implement than other methods be-

cause only peak load measurements are necessary (the post-peak behavior, crack
tip displacement measurement and optical measurement of crack tip location are

not needed, and even a soft testing machine without servo-control can be used).
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S4. The orthotropic properties of fiber com posite lam inates can and m ust be taken

into consideration while analyzing the fracture characteristics. Replacing Young's

modulus by Bao-Suo-Fan's equivalent Young's modulus, the formulas of the size

effect method previously derived for isotropic materials can be generalized for the

orthotropic materials. This makes it possible to determine size and shape inde-

pendent values of the fracture energy, effective fracture process zone length, and

R-curve for cross-ply laminates.
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Table 1: Results of Tensile Tests of Notched Composite Laminates of Different Sizes and
Different Notches (1 lb. = 4.4482 N, 1 ksi = 1000 psi = 6.8947 MPa).

length x width double-edge notch single-edge notch
(in2) Max. load (ib) oN (ksi) Max. load (1b) cN (k3i)

1 x 0.25 862 114.9 748 74.8
1 x 0.25 880 117.3 819 81.9
1 x 0.25 807 80.7
2 x 0.5 1720 114.7 1575 78.8
2 x 0.5 1714 114.3 1513 75.7
2 x 0.5 1696 113.1 1553 77.7
4 x 1.0 2675 89.2 3368 84.2
4 x 1.0 2782 92.7 2939 73.5
4 x 1.0 2512 83.7 2979 74.5
8 x 2.0 4934 82.2 5207 65.1
8 x 2.0 5042 84.0 6140 76.8
8 x 2.0 4425 73.8 5315 66.4

1

I
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Figure 1: History of temperature and pressure used in curing of the specimens.

Figure 2: (a) Enlarged typical cross section of a single-ply with multidirectional carbon
fibers; (b) Geometrically similar test specimens of four different sizes of ratio 1:2:4:8,
before the cutting of notches; (c) Test arrangement in the Instron 8500 Testing Machine.

Figure 3: Geometry of test specimens; left: double-edge notches, right: single-edge
notches.

Figure 4: Typical measured load-deflection diagrams of quasiisotropic and crossply spec-
imens of various sizes and different notches, showing an increase of nonlinearity with a

q decrease of size.

Figure 5: Failure patterns as seen on quasi-isotropic test specimens after the test.

Figure 6: Size effect measured for cross-ply specimens with double-edge notches.
I

Figure 7: Size effect measured on quasi-isotropic specimens with single-edge notches.

I

Figure 8: Normalized R-curves for cross-ply and quasi-isotropic composites, deduced from
size effect measurements.
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Interface Fracture and Softening Slip
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ABSTRACT.- The paper analyzes the size effect, which is an inevitable consequence of post-

peak softening in the relation of interface shear stress and slip displacement between a fiber or

reinforcing bar and the surrounding matrix. To make a closed-form analytical solution feasible,

the problem is simplified as one-dimensional. Solutions of pull-pull and push-pull failures are

obtained for a linear softening stress-slip law with residual strength, and for an exponential

law without residual strength. It is shown that the post-peak softening leads to localization

of slip and interface shear fracture. The interface fracture process zone has a finite length.

It propagates along the interface during the loading process, causing the distribution of the

interface shear stress to become strongly nonuniform. The larger the bar or fiber size, the

stronger the nonuniformity. The size effect in geometrically similar pullout tests of different

sizes is found to represent a smooth transition between two simple asymptotic cases: (1) The

case of no size effect, which occurs for very small sizes and is characteristic of plastic failure.

and (2) the case of a size effect of the same type as in linear elastic fracture mechanics, in which

the difference of the pullout stress in the fiber and the residual pullout stress corresponding to

the residual interface shear stress is proportional to the inverse square root of the fiber or bar

diameter. An analytical expression for the transitional size effect is obtained. This expression is

found to approximately agree with the generalized form of the size effect law proposed earlier

by Balant. The shape of the size effect curve is shown to be related to the shape of the

softening stress-slip law for the interface. Finally, it is shown how measurements of the size

effect can be used for identifying the interface properties, and a numerical example is given.
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1 Introduction

The shear stress in the interface between fibers and matrix in composites or between

steel bars and concrete is related to the slip displacement in the inteface. This relation

is known to exhibit a post-peak softening. When softening occurs, analysis of the failure

load according to plasticity becomes invalid. One must take into account localization

of softening damage along the interface and consider fracture mechanics aspects of the

problem. By analogy with studies of strain-softening damage, one must also expect a

size effect on the nominal strength of geometrically similar structures of different sizes,

which represents the most important practical consequence of the localization of softening

damage. The objective of this paper is to analyze this size effect.

The problem of pullout of fibers or bars from the surrounding matrix has received

considerable attention in recent years and many important results have been achieved;

see e.g. Lawrence (1972), Freund (1992), Fuller et al. (1990), Gao et al. (1988), Leung

and Li (1990 a,b), Li et al. (1991), Shah and Ouyang (1991), Stang et al. (1990), Steif and

Hoysan (1986), Wang et al. (1988), Beaumond and Alezka (1978); Bowling and Groves

* (1979); and Gray (1984 a,b). An excellent review of the pullout test analysis has recently

been presented by Shah and Ouyang (1991). Further light on the interface slip has been

shed by studies of slip at interfaces of other types, including relative slip of rough crack

surfaces (e.g. Baiant and Gambarova, 1980; Divakar et al., 1987; Feenstra et al., 1991).

Most interface models consider the shear stress at the interface to be a function of

the slip displacement (e.g. Badant and Gambarova, 1980; or Divakar et al., 1987). To

make analytical solutions feasible, many previous authors have simplified the complex

three-dimensional behavior at interface as one-dimensional (e.g. Gao et al., 1988; or

Freund, 1992). In the one-dimensional solution, the influence of the normal pressure

across the interface can be taken into account as long as this pressure is known. But if

this pressure is unknown, a more general solution which takes into account the interface

dilatancy, i.e. the normal relative displacement across the crack, is required. In the

simplified one-dimensional analysis, the interface dilatancy can be approximately taken

into account by adjusting the values of the parameters in the functional relationship T-(v)

linking the interface shear stress T to the relative slip displacement v; see e.g. Lawrence

2
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et al. (1972), Bowling and Groves (1979), Hutchinson, and Jensen (1990). Stang et

al. (1990) considered the stress-slip relation to consist of an elastic part followed by a

sudden stress drop and a residual constant friction (Fig. la). However, it is no doubt

more realistic to consider a gradual softening as shown in Fig. 1(b, c) (for a sufficiently

large fiber size, the sudden stress drop with an increased strength limit but the same

area under the curve giving the fracture energy must nevertheless give approximately

equivalent results). As for the rising initial linear stress-displacement relation shown in

Fig. 2a, it cannot be an interface property but must refer to the deformation in the layers

of the matrix adjacent to the interface. For this reason, we will omit the rising linear

part. As for the post-peak softening, we will consider it to be linear (Fig. lc), in order

to make a simple analytical solution feasible, although the real behavior is no doubt a

smooth curve.

The size effect in the problem of fiber or bar pullout has apparently not yet been studied 6

theoretically. However, its existence has already been demonstrated experimentally for

the case of bar pullout from concrete (Baiant and Sener, 1988). In this paper, we will

focus on the analysis of the size effect, considering a situation with a two-way debonding

similar to that of Leung and Li (1990). We will deduce closed-form analytical formulas

for the size effect, consider the asymptotic cases, and finally show how knowledge of the

size effect can be exploited for determining the interfacial material properties solely from

measurements of the maximum pullout forces.

Because we will simplify the problem as one-dimensional, we will be unable to make a

distinction between fibers in composites and reinforcing bars in concrete, except in terms

of the effective values of material parameters (such as the bond strength or the residual

bond stress). Fibers and bars differ in fracture patterns, dilatancy and pressure sensitivity.

But these phenomena can be specifically described only in a three-dimensional analysis.

2 Idealization of the Problem and Assumptions

For the sake of simplicity, our analysis will be one-dimensional. A cylindrical fiber or bar

of diameter d is assumed to be embedded in an outer cylinder of diameter D representing

the matrix of a composite material (Fig. 2). The cross sections of the fiber or bar and

3



P of the outer cylinder are assumed to remain planar, but relative slip at the interface is

possible. The stresses within the fiber as well as the matrix are uniform in each cross

section. The interfacial debonding is characterized by the diagram of interface (bond)

shear stress r versus relative stress displacement v shown in Fig. 1c, where T, = initial

bond strength (initial cohesion), rj = residual bond stress at sliding interface, and v0 -

critical slip determining the slope of the r(v) diagram, which is assumed to be linear.

The fiber and matrix are elastic, characterized by Young's elastic moduli Ef and Ema.

Although in reality r, and rd are pressure dependent, in a one-dimensional model they

must be assumed to be constant. The interface shear stress at the softening portion is

T = r, 1 - (1)

The cross-hatched area in Fig. 1c represents the bond fracture energy, which is expressed

as:

,Gf v (iO (2)

Let z be the longitudinal coordinate. The fiber has a free end at z = -1. We will

study two types of test: (1) Pull-pull, in which the cylinder representing the matrix has

* a free end at z = 0 and is supported at the opposite end (Fig. 2a), and (2) pull-push, in

which the matrix cylinder is supported at z = 0 (Fig. 2b). First we consider the pull-pull

test and leave consideration of the pull-push test to the end.

Equilibrium of a small element of the fiber, of length 6z, requires that 6a(7rd 2 /4) =

Tr(rd)6z which yields
do 4r
dz d

where o = normal stress in the fiber. Equilibrium in the cross sections of fiber and matrix

requires that oA! + CimAm = a-.A, which yields

E,,
E= -(4)

where a. = applied pull-out stress (a. = P/Af where P is the pull-out load), aor, = normal

stress in the matrix cylinder, 0 = A 1 E1 /AmEm, Af = ird2, and Am = r(D 2 - d2 ).

Noting that the difference between the strains in the fiber and the matrix is dv/dz,

we have dv/dz a-/Ef - a-r/Em, which yields

dv 1+0 0- = -a- - c0 5)
dz E(
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The displacement at the end of embedment (Fig. 2), z = 0, is:

o v(O)+v(-L) + (6)6r =, ifL)- z 1 +'0 (1 + O)E!

For the case of softening slip, the differential equation for the fiber stresses ensues by

differentiating (5) and substituting (3) and (1):

d2o' 2a W2, 27

dz2  1+4

in which i2 = 4(1 + ')r, 
(8)

Ef vod

At the cross sections with no interface slip (no shear crack), the strains in the fiber

and the matrix cylinder are equal, i.e. u/Ef = or/Em; this yields

o= - .(9)
1+4

3 Analysis of Pull-Pull Test

In the pull-pull case, two interface cracks grow from both ends of the fiber until they

join. At that moment the maximum applied stress o. = oN, representing the nominal

strength, is reached. If the load is controlled, failure occurs at that moment. The post-

peak softening is observable only when the fiber displacement at the end is controlled,

except when the response diagram exhibits a snapback. The snapback, as we will see,

occurs for sufficiently large sizes.

Because of the discontinuities at the beginning of slip and at the attainment of residual

bond shear strength, several stages must be distinguished in the solution. The number

of states to consider is reduced in the case that 0- = 1 (Fig. 3). Therefore we restrict

attention to this case, although the general conclusions and implications for the size effect

are the same for any 0. For 4 = 1, we have w2 = 8r,/Efvod. The stages we must

distinguish are as follows:

1. The initial stage, in which there are two separate cracks emanating from the ends

of the fiber and the shear stress is everywhere larger than the residual strength rd;

5
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.2. The final stage, in which the two cracks have joined into one and the residual

strength Td has been reached at both ends;

3. The intermediate stage, in which one must distinguish two cases:

(a) The two cracks join before T reaches Td at the ends, or

(b) the shear stress Td is reached before the cracks join.

Initial Stage

In the middle portion of the fiber there is no slip and the shear stress T = 0. The maximum

T occurs at the fracture tips z = -1j, at which T = T,; i = 1, 2 refer to the right and left

parts. From (7), for parts I and II,

Ti = T cos w(z + 1j) (10)

From (1), the interface slip is

v = v0 [1 - cosw(z + 1)] (11)

The slip increases from the crack tip to the end of the crack. The distances 1i of the tips

from the right end of the fiber (z = 0) are 1i = a and 12 = L - a, where a = length of

each crack,

a = -arcsin I-a 6  (12)

Between the cracks, the stress in the fiber is or = a./2. From the crack tips to the crack

ends, the stress in the fiber increases as

or,( Sin W(z +/)
Ori = (1 (+ sinwa (13)

The displacement of the end increases with a., and the diagram of a.(6) is given, in the

first stage, by

81=2-•-+t. o [1- 1 (wo.d )2 (14)

6



The diagram of a. vs. 6 has a negative curvature. The transition to the intermediate

stage occurs when a. reaches a critical value that is the smaller of the following two values:

a. 8 TwL * 8 2 (15)

The critical value is a. if wL is small enough and a;* if wL is large enough. 0

Intermediate stage

Case (1) of the intermediate stage, already defined (Fig. 3b), occurs if w L < 2 arccos (rd/ r,).

Otherwise case (2) occurs.

In case (1), the cracks have already joined and the interface shear stress is everywhere

smaller than r,, but slightly larger than Td. According to (1),

= wd cos W(z + 1)6'

8 sin u

The stress in the fiber (Fig. 2) increases from the left end (z = -L) to the right end

(z = 0) and is a sin w(z + •)(7

or - + 2(17)2=•-1 sinwl

The displacement 6 of the end of the fiber is, for the first case of the intermediate stage,

621 = L0 + a 2 cot !L (18) I

The stress in the fiber varies from a.* to

I 8 Tan wL (19)
w. d ta 2

for which the residual interface shear stress rd is reached at the end. Because wL <

2 arccos(rd/r.), a'.r is always smaller than a., and so the failure occurs at a. = a-N = .

The equilibrium path of the structure exhibits snapback if L is sufficiently large or rd is

sufficiently small. Precisely, the condition of snapback is

2zo < wL < 2 arccos Td (20)
TS

in which zo is the root of zo tan zo = 1, i.e. Zo = 0.8603.

7
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IP In cae (2) of the intermediate stage, i.e. for wL > 2 arccos (rd/T,), there are two

cracks (Fig. 3b). The interface fracture process zone exhibits linear softening and its

length is cf. The fracture process zone of length cd is at constant residual interface shear

stress r = Td;

c= arccos rd Cd = a. - a.**) (21)
W TTd

and a = 11 = L - 12 = cf + Cd. With GC defined by (2) and w by (8), the fracture process

zone length is cf = e 0I VId in which r.I = (1/4)V/-•/E- and Lo = EmG1 /T2 when Td = 0.

In the general case, r., depends on both the fiber proportion in the matrix and the elastic

moduli;

IJ =x/ E! (22)
2 2 (1 +.O)Em

The expression for the normal stress in the portion of the fiber that has a linearly varying

interface shear stress is the same as for the initial stage. For the portion of the fiber

that has a constant interface shear stress, the normal stress is linear in z if Td = 0, and

otherwise it is constant. The end displacement 6 increases with 00, and the diagram of

a, vs. 6 has a positive curvature;

022 La. ( _ Td) + d 0. 0.--2 (23)2E--" +" 1- TS 16TdE!

Failure occurs when a0 aN = all which is always larger than u•*;

+ L - L - 2 arccos ) (24)

Final stage

The softening zone is now localized in the middle of the specimen (Fig. 3c). Its length

AL gradually decreases to 0. The length of the fracture zone, in which r = rTd, is Cd =

(L - AL)/2. For a given applied stress a., AL is the solution of

4Td 2 wAL

a- (-L -AL + tan 2- ) (25)

Displacement 6 at the end of the fiber is

La. ( 1 ) + a. 4 cdrd(
2E- TI fo - dE' )
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Note that do,/d(AL) is always positive, and d(AL) = -2dcd is always negative. There-

fore, dua is negative, and the equilibrium path decreases with the applied stress. There-

fore, failure occurs in this case before the final stage is reached.

The condition of snapback is

wJ(L+4"2cd) w•ALtan - > 0 (27)
2 2

At Lid = constant, wL oc v2 when 0 _<w AL/2 <_ arccos(Td/r,), and so snapback must

occur for sufficiently large sizes.

4 Size Effect

The scaling law is the most important attribute of any physical theory. In the classical

theories of elasticity or plasticity, the problem of scaling law has not received much at-

tention because the law is very simple-the nominal strength is independent of structure

size. In the mechanics of damage and nonlinear fracture mechanics, the problem of scaling

or size effect has received major attention in recent years, principally because there is a

strong effect of size on the nominal strength and the scaling law is more complex, repre-

senting a transition from elasticity (or plasticity) to linear elastic fracture mechanics, in

which the nominal strength is inversely proportional to the square root of the structure

size (Baiant, 1984; Baiant and Cedolin, 1991).

The size effect can be defined only for structures with similar geometries and similar

cracks. Therefore, we consider the ratios Did and Lid to be constant and choose the

fiber diameter d to play the role of characteristic dimension of the structure. We note

that, in this cae, wd and wL are both proportional to Vrd. The applied pullout stress a.

at maximum load may be employed as the nominal strength aN. The value of ON can be

calculated from (15) if wL < 2 arccos rd/7is, and otherwise from (24).

For numerical examples, we consider the material properties r, = 31MPa, Td =

3MPa, vo = 0.021 mm and E! = 200 GPa, and run the calculations for sizes d =

1, 2.9,6.4 and 12.7 mm at constant ratio Lid = 4. The results are plotted in Fig. 4.

It is apparent that the maximum pullout stress decreases with increasing size. Further-

more, the type of the load-displacement diagram changes; for the smallest size we have a

9



AF gradual post-peak softening, for the next size we have a nearly vertical stress drop, and
for the largest two sizes we have snapback instability right after the peak. This behavior

is typical of the size effect in all structures exhibiting damage localization or nonlinear

fracture. The size effect is caused by increasing localization of the softening regions along

the fiber length as d increases. The softening region at maximum load, which represents

the fracture process zone and is characterized by stress values between T, and rd (Fig. 1),

extends in small specimens over a large portion of the fiber length and in large specimens

over a small portion of the fiber length. This behavior is similar to all other failures due

to damage growth or nonlinear fracture. 6

The size effect obtained for our example is shown in Fig. 5 by the diagram of log(aN -

ao0) vs. log d, where aO is the residual fiber strength corresponding to the residual interface

bond stress rd.

Let us now examine the asymptotic behavior. In the limit of small sizes, d -- 0, we 0

obtain

aN = UG = 4r.- = constant (28)
d

In the limit of the large sizes, d -- oo, we obtain 0

j8/,Efvo 2 _ T
aN = aa =0+ r ( 1- arccos- (29)

VTd TS T

in which a0 is the residual pullout stress of the fiber when the interface is completely

debonded and softened to rd,

ao = 4rd L (30)

According to (29), the basic form of the size effect for the large sizes is
II

1 
(31)

Except for the presence of a0, this represents the size effect characteristic of linear elastic

fracture mechanics. In the plot of Fig. 5, it corresponds to the inclined straight-line

asymptote of slope -1/2.

The size effect obtained by the present analysis and shown in Fig. 5 agrees with the

general size effect of damage mechanics or nonlinear fracture. Under the hypothesis that

the energy dissipated at failure is a smooth function of both the specimen (or structure)

10



size and the fracture process zone size, with the latter being a material property, it was

shown (Balant, 1985) by dimensional analysis an similitude arguments that, in general,

a•v = Bf [ý(1 + 4-' + Alf- 2 + A2- 3 +...)1-1/2m . = (dido)m  (32)

Here ft' is the tensile strength of the material, introduced strictly for convenience, and

m, B, do, A,, A2 ,... are positive empirical coefficients. Eq. (32) represents an asymptotic

series expansion with respect to an infinitely large specimen. It was further shown (Baiant,

1987) that for size ranges up to about 1:20, the asymptotic series can be truncated after

the linear term and that, for most applications to concrete and rock, one can take m = 1. 0

Thus (32) reduces to the size effect law (Baiant, 1984):

Bf~' d
BI- d (33)

For materials with a residual strength, represented here by rd, oN must be replaced

in the foregoing equations with uN - aO where a0 is the residual nominal strength. Thus,

truncation of (32) after the linear term yields the law:

7, - ao = Bft(1 + /3n)-1/2m (34) 0

and the simple size effect law (m = 1) in (33) is generalized as

ON - aO = Bt (35) 0

It is obvious that, for d > do, (33)-(35) reduce to aN - ao oc d-1/ 2 , which is the form of

size effect exhibited by every formula of linear elastic fracture mechanics. For d < do, (33)

or (35) reduces to oN = constant (no size effect), which is characteristic of elasticity or 0

plasticity. For the intermediate values of size d, (33) or (35) describes a gradual transition

between these two asymptotic cases.

Matching the asymptotes to those calculated for fiber pullout, the simple size effect

law in (33) gives in Fig. 5 the plot shown by the solid curve (Bfl = 500 MPa, do = 4.2 0

mm).

The presently calculated size effect law may be rewritten for ao = d= 0 as follows:

Bft'.
N= sfin V08 if ' L (36) 1
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I

A Bf 7f

V4 N "if 8> 4 (37)

These results are exact for the pull-push problem for any 0, as we will see in the next

section.

Equation (35) is not identical to (36)-(37), but it can be made nearly identical for a

certain value of m. This value can be estimated by requiring (34) and (36) to coincide for

d = do or j - 1. This yields :

ln2

T2In (sin1) =2.009 2 (38)

For m = 2, the agreement of (36)-(37) with (35) becomes virtually perfect.

For tensile fracture, the value of exponent m is known to be related to the shape of
the strain-softening diagram (Batant, 1985). Striving for the simplest analytical solution

possible, we have assumed this diagram to be linear (Fig. 1c). For tensile fracture, it

was shown that a softening diagram with a progressively decreasing slope and a long tail

yields a more gradual transition in the size effect plot. It may be expected that if Fig.

ic were replaced by such a softening diagram, the calculated size effect could be made to

match the dashed curve in Fig. 5, corresponding to the simple size effect law in (35). It

remains to be seen whether the actual behavior of interfaces corresponds to the simple

case m - 1 (as it approximately does for tensile fracture of concrete), or an m-value

very different from 1 needs to be used. To illuminate this question, the simple nonlinear

softening law T" = T. exp (-by) (Fig. Id) will be considered next.

5 Size Effect Law for a Nonlinear Softening Inter-
face Behavior

The pullout equations (3) and (5), complemented by the general nonlinear law r = r(v)

lead to the general nonlinear differential equation for v(z):
d 2 vk wt

d-F- = k(), with k =4(1 (39)

which is valid for both the pull-pull and pull-push tests. The axial stress in the fiber is

given by a(z) - Ef(1 + ')-v(z) + 0(1 + 0)-'a. for the pull-pull test and by a(z) =

12



E,(1 + 0)-v'(z) for the pull-push test. The boundary conditions are v' - 0 at the tip of

interface crack (v = 0), a = a. at z = 0, and a = 0 at z = -L. For simplicity, as before,

the pull-pull case will be studied for 1 = 1, and the pull-push case for any @.

The general solution of (39) is:

/ dv (v-)z (40)

To make integration easy, we will consider:

T(v) = rexp(-bv) (41)

The residual shear stress rd is here taken equal to zero, and b is related to the fracture

energy G/ by b = r./G1 . From (40):

V [In cosh (2/i--bf * ) (42)

The axial stress for the pull-pull case (0 = 1) is:

a E= tanh F Gb(z + 1j) + a. (43) 0
•= 2 f 22

and for the pull-push case:

tanh [ij-b(z + l) (44)
[Vi 1tn 2

The stress at failure is reached when the interface is debonded along all of its length.

The size effect law for pullout with exponential softening and no residual stress may

now be written as (0 = d/do) :

Nv = Bftanh V,"6 (45)

where Bi f, 4rL/d, do = 16EfGf/(Bft)2 for the pull-pull test with 1 = 1, and d0

8EjG! (1 + ()-l/(B )2 for the pull-push test.

Again, to match (34) closely to (45), we require them to coincide for 3 = 1(d do).

This condition yields In 2 -
21n(tnhl) -- 1.25 (46)
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As might have been expected, m is now found to be much closer to 1 than for the linear

softening. This confirms the dependence of m on the shape of the interface stress-slip

law. The corresponding size effect curves are plotted in Fig. 5b. We see the theoretical

curve agrees almost perfectly with the size effect law with additional parameter (34) and

is quite close to the simple size effect law (35).

The foregoing analysis with a softening exponential stress-slip law does not take in

account the residual strength ao of the interface. For its effect one must refer to our

solution for linear softening.

The general conclusion of our nonlinear analysis is that the influence of the shape of

the shear stress-slip curve on the size effect is appreciable only for the transitional sizes.

For a softening stress-slip law of declining slope, the size effect is closer to the simple

formula (33) than for a stress-slip linear law. The asymptotes of the size effect curve in a

log-log plot remain the same; the interface strength rT governs the failure for very small

sizes, and the interface fracture energy Gf the failure for very large sizes.

According to (40), closed-form analytical solutions could be obtained also for stress-slip

laws other than (1) or (41).

6 Identification of Interface Properties from Size

Effect Measured in Push-Pull Tests

In the mechanics of tensile fracture, the measured size effect can be exploited to determine

the material fracture characteristics (Baiant, 1987; Baiant and Pfeiffer, 1987; Batant and

Kazemi, 1990). The same must be possible for fiber pullout.

Indeed, after calculating the asymptotes of the size effect plot, the size effect param-

eters for linear softening can be identified by matching these asymptote with equations

(28) and (29). This yields

B - 4(r. - Td)L (47)

/ 2

do -" _ 1 - - arcco 'Y 0
8rE 1 T T (48)

(Bftl)2  22 a .
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When the size effect law is to be matched to experimental data on aN, parameters

of the (33) can be easily identified by linear regression Y = AX + C where X = d, Y =

I/(av - ao)2, Bft = 1/ vr, and do = C/A. A similar linear regression is possible for (34).

As an example, we will use the test data of Baiant and Sener (1988) (the circled points

in Fig. 5). These data are for pullout of reinforcing bars from concrete cubes. We use

these data only to illustrate the procedure while being fully aware that the failure mode

observed in these tests did not fit the assumptions of the present analysis. The failure

started by radial splitting cracks emanating from the bar. These cracks, which were

caused mainly by lugs on the reinforcing bars, cannot be described by a one-dimensional

model. Had smooth rather than deformed bars been used, the failure would have been

due only to interface slip, and then the present example would represent the reality rather

than just a mere illustration of the procedure.

Deformed reinforcing bars of yield strength 414 MPa and diameters 2.9, 6.4 and 12.7

mm were used. In each cube, there was one bar parallel to one edge of the cube and

sticking out at the center of one face. The embedment length of the bar was L = 4d. The

size effect law parameters, identified previously (Baiant and Sener, 1988) were Bft = 500

MPa, do = 2.1 mm and ao = 0.

For the purpose of analyzing these data, the solution for the pull-push test has also

been derived:

for wL _arccos-- T: V = 4 sin wL (49)T. wd

for wL>arccos- : ': = +T - arccos -J (50)
TS wdT Ta

in which w is given by (8) and ao = 4TaL/d, Af = AIEiA,IE,. Knowing the exponent m,

which is here taken as m = 1 (same as Batant and Sener, 1988), we can use the aforemen-

tioned linear regression plot Y = AX + C to determine the size effect law parameters Bft'

and do. Matching of the asymptotes, we get the following expressions for the interface p

properties:

r.= 4-LBft' +4rd (51)
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p AVI
1+0 (B ft)2  ( d Tdo  1 T2 -arccos - (52)V0 = 4 'r'Ef TS TS

Then, using the size effect law parameters obtained by Baiant and Sener (1988), we get

from (51) and (52) the following interface properties

TS = 31 MPa, vo = 2.1 10-2 mM, G 1 = 325 J/m" (53)

The value of rd has been neglected in these calculations. The optimum fit by the size effect

law given by (33) is shown by the dashed curve in Fig. 6a, and the fit based on (49) and

(50) with the values in (53) is given by the solid curve. Assuming progressively increasing

values rd = 0, 1, 2,3 MPa, one obtains from (49) and (50) the solid curves shown in Fig.

6b, c, d. Unfortunately, the scatter of the data is insufficient to decide which of these

curves is more correct. To avoid such ambiguity and obtain better estimates of interface

properties, tests of a broader size range (1:10) would be necessary. The required breadth

of range is generally proportional to the coefficient variation of the statistical scatter.

It is planned to carry out size effect tests of pullout in which the failure occurs by slip

alone (without radial cracks). Then it will be possible to give an example that is more

than just an illustration of the procedure.

Conclusions

1. The one-dimensional simplification of the fiber (or bar) pullout problems allows a

simple analytical solution yielding closed form expressions for the stress-displacement

diagram as well as the size effect.

2. The solution shows that, for geometrically similar situations: (1) the maximum

pullout stress decreases with increasing size (characterized for example by the fiber

diameter), (2) the post-peak slope of the load-deflection diagram becomes steeper

as the size increases, and (3) for a sufficiently large size, snapback failure is obtained.

3. An inevitable consequence of softening in the relation of interfacial shear stress ver-

sus slip displacement is localization of the fracture process zone along the interface,
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with a gradual approach to interface shear fracture. Due to localization, the distribu-

tion of the interface shear stress along the fiber or bar becomes strongly nonuniform,

and the nonuniformity gets stronger as the size increases. The localization is the

cause of size effect.

4. The solution confirms that the size effect is transitional between the case of elasticity 0
or plasticity, for which there is no size effect, and the case of linear elastic fracture

mechanics, for which the difference of the interface strength and the residual stress

is inversely proportional to the square root of the size. This transitional size effect

can be described by the approximate size effect law proposed by Bagant (1984) or 0

its subsequent generalization with parameter m controlling the shape.of the size

effect curve.

5. The transitional size effect is shown to depend of the shape of the interface stress- 0

slip law. A declining slope of the stress-slip law leads to a more gradual and more

extended transition in the size effect plot.

6. Measurements of the size effect in fiber pullout can be exploited for determining the 0

interface properties.
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Figure Captions

Fig. 1 Various assumptions about the interface properties characterized in terms of in-

terface shear stress and relative displacement.

Fig. 2 Geometry of the fiber or bar pullout tests.

Fig. 3 Fracture process zones and zones of residual stress along the fiber for various

stages of loading.

Fig. 4 Diagrams of pullout stress versus displacement for tests of similar geometry and

different sizes.

Fig. 5(a) Size effect law proposed by Baiant (1984), and (b) comparison of calculated

size effect to the general forms of size effect law for quasibrittle fracture.

Fig. 6 Test data for bar pullout, used as an illustrative example, and comparisons with

the present solution (solid curves) and with the simple form of the size effect law

(dashed curve).
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Identification of Stress-Slip Law for Fiber or Bar

Pullout from Size Effect Tests

by Zden&k P. Batnt,' Fellow ASCE, Zhengzhi Li2 and Michael Thornsa

ABSTRACT. - Test results on the size effect in pullout strength of reinforcing bars embedded
in concrete are presented. Attention is focused on failures due soley to interface slip, with

no cracking in the surrounding concrete. This type of failure is achieved by using smooth
round bars and a sufficiently large ratio of bar diameter to embedment length. Elimination

of cracking in the surrounding concrete makes it possible to study the characteristics of the
interfacial shear fracture between steel and concrete. The results of tests of geometrically

similar specimens show that interfacial shear fracture causes a size effect on the nominal
strength in pullout. The size effect is found to be transitional between plastic failure (the
current approach of concrete design codes, for which there is no size effect) and linear elastic

fracture mechanics (for which the size effect is the maximum possible). This transitional size
effect can be approximately described by the size effect law proposed by Balant for quasibrittle

failures in general. By fitting a theoretical formula obtained in the previous study to the size
effect data, the basic material characteristics of the stress-slip law for interface fracture are

determined. These include the interfacial fracture energy, the shear bond strength (debonding
shear stress), the residual frictional shear stress, and the length of the shear fracture process

zone. The same method could be used for identifying the interfacial fracture characteristics

of other materials, e.g., fibers in composites.

1 Introduction

The problem of pullout of reinforcing bars from concrete or fibers from the matrix of a
composite material has been studied intensely and many significant results have already

been achieved. Two concepts have been used as the criterion of pullout failure: (1) The

interface shear strength criterion (Lawrence, 1972; Takaru and Arridge, 1973; Yue and

Cheung, 1992a, 1992b; and Hsueh, 1991a, 1991b, 1990a, 1990b); and (2) the fracture

'Walter P. Murphy Professor of Civil Engineering and Materials Science, Northwestern University,
Evanston, IL 60208 US.A.

2Graduate Research Assistant, Northwestern University
3Visiting Research Assistant, Northwestern University; on leave from Lehrstuhl fur Mechanik, Tech-

nische Munich, Germany

It



p

mechanics criterion of critical energy release rate (Guerney and Hunt, 1967; Outwater

and Murphy, 1969; and Stang and Shah, 1986), which was in some works combined with

the consideration of friction between the debonded fiber and the matrix (Gao et al., 1988;
and Hutchinson and Jensen, 1990).

More realistic is a generalized fracture mechanics appraoch which combines both con-
cepts. It is based on a relation of the interfacial shear stress r, (bond stress) to the

interfacial slip, in short, the stress-slip law. This law involves the strength limit as well
as the fracture energy. It may involve a rising linear part simulating the elastic shear

deformation of a thin layer of matrix adjacent to the interface.
The stress-slip law is characterized by post-peak softening, which is sometimes consid-

ered as a sudden stress drop but is more realistically modeled as a progressive softening.

Because of the softening, the interfacial slip represents shear fracture. Normally the
stress-slip law possesses residual shear strength, rT, which can be regarded as friction (the
dynamic friction). From the fracture mechanics viewpoint, the area under the stress-slip

curve and above the friction limit represents the shear fracture energy of the interface,
Gf, which is a basic interface property. The values of the shear strength, fracture energy
and frictional stress can in general depend on the confining pressure from the surrounding

* matrix (the normal stress across the interface).
While the stress-slip law for the interface is a basic material characteristic, it is dif-

ficult to measure it directly. It must be deduced indirectly from some other types of
observations. In a preceeding study (Badant and Desmorat, 1994), it was shown that
the stress-slip law can be identified from measurements of the size effect on the pullout
strength when geometrically similar specimens of different sizes are tested. A simplified

method of identification was proposed and illustrated by a numerical example, but prac-
tical application has not been given for lack of test data. The objective of the present

paper is to report tests of size effect in pullout and identify from them the stress-slip law
for the steel-concrete interface.

The identification problem requires a sufficiently simple solution, which is preferably
in a closed form and is such that it can be inverted. Such a simple soluti n has been

obtained in a preceeding study (Balant and Desmorat, 1994), in which the pullout problem
was simplified as one-dimensional, with the matrix represented as an elastic bar or tube
surrounding the pulled bar or fiber. Although the one-dimensional simplification is no
doubt too crude for some purposes, it is no worse than the assumption of elastic Winkler

foundation as a replacement of an elastic half space. Of course, the equivalent elastic

2



stiffness of the surrounding bar that models the matrix must be properly determined,

either by a more sophisticated analysis or by tests.

It is now well understood that softening material properties always engender size effect.

Normally the size effect in pullout failures arises from two sources: (1) The fracturing of

the matrix surrounding the fiber or bar, and (2) the softening in the stress-slip law,

as already described. Obviously, to determine the stress-slip law, one must conceive a

special type of pullout test in which there is no fracturing in the matrix, only the slip in

the interface. This is the basic idea of the present experiments. As will be seen, pullout

failure of reinforcing bars due to exclusively to interface slip can be obtained if a smooth

round bar (without any lugs) is used and the embedment length of the bar or fiber is 0

sufficiently short.

It may be noted that the pullout failures of reinforcing bars in concrete or fibers
in composites exhibit some different characteristics. However, these differences are due

mainly to the fracturing of the matrix surrounding the bar or fiber (for example the frac- 0

ture induced by lugs on the reinforcing bars in concrete). These differences are probably

small if the failure is due to the interfacial slip alone, which is the case here. Anyway,

because the pullout problem is simplified as one-dimensional, it is impossible to make a

distinction between fibers and bars (except in terms of the effective values of the material 0

interface parameters).

2 Test of Pullout Due to Interfacial Slip Alone

The specimens tested, shown in Fig. 1, were concrete cubes of sides L = 1.5,3,6 and 12

in. (38.1, 76.2, 154.4 and 304.8 mm), in which steel bars of diameters D = 0.125,0.25,0.5

and 1 in. were embedded. In this manner, perfect geometric similarity of the specimens of

different sizes was preserved. The bars were smooth, in order to achieve that the pullout

failure be caused solely by interfacial slip, with no fracturing in the surrounding concrete. 0

This mode of failure was borne out by the tests. It may be noted that the round smooth

rods were slightly rusty at the time of casting, however, this condition is not undesirable

since some rusting is normally present in practice. Based on the expected average bond

strength (Naaman, 1991), the bar size was chosen so that yielding of the steel could not 0

occur before the pullout failure of the interface, and this was also borne out by the tests.

The part of the steel bars that was sticking out of the concrete cube was 10 in. long for

each size.

The cubes were made of concrete of standard cylindrical strength f,' = 7,290 psi

3
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( (50.26 MPa) for normally cured specimens and f. = 5.220 psi (36.0 MPa) for the con-

crete cured in an accelerated manner (tested on cylinders of diameter 3 in. or 76.2 mm,

at the time of the tests). The Young's elastic modulus of concrete was 4.31 x106 psi

(29.7 GPa), determined as the mean initial stress-strain slope from a set of the stan-

dard cylindrical compression tests for the same batch of concrete. The Young's modulus

of the steel bars was 30.5 x10 psi (210.0 GPa). For both sets, the companion cylin-

ders for the test of strength had the same curing history. In the concrete mix, the ratio

water:cement:sand:gravel was 0.6:1:2:2, by weight. The aggregate consisted of granite,

quartz etc. gravel and quartz sand of maximum grain sizes 3/8 in. (9.6 nmm) and 0.132
in. (3.35 nmm) respectively. Both were washed and air dried for 40 or 48 hours prior to

mixing. Portland cement of ASTM type I, without any admixtures, was used. Two sets

of specimens of all sizes, each from one batch of concrete, were cast in wooden moulds

(Fig. la). The steel bars were vertical during casting. The specimens were unmoulded
one day after casting. The first set of specimens was then stored in a fog room at nearly 0

100% relative humidity and 20* C temperature for 28 days, and then tested. The second

set of specimens was cured in water for seven days at 50° C, so as to achieve accelerated

curing. In the second set of specimens cured in water, the largest cube of 12 in. side was
( omitted because of the limited size of the heated chamber. Despite the lower strength of

the specimens cured in accelerated manner, the bond strength was about the same as for

the specimens cured in the standard manner.

The specimens were tested immediately after the curing. So the specimen bulk was

still wet during the test, and thus no microcracking due to drying could have occurred in

the specimens. All the specimens were tested in a 20 kip (89.0 kN) closed-loop controlled

MTS testing machine. All the tests were displacement controlled. The displacement rate

was kept constant during each test and was chosen so that the maximum load for the

specimens of each size would occur in about 10 min. (for the 6 in. cubes the displacement D

rate was 0.003 in./min. or 0.076 mm/min.; for the 12 in. cubes it was slightly higher, and

for the 1.5 in. cubes it was slightly smaller). The strain of the steel bar outside the cube

was recorded by a MTS extensometer. The displacement was measured on the steel bar

as close to the face of the cube as possible, that is, right above the steel plate providing

the reaction (Fig. lb).
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3 Test Results and Size Effect Observed

All the specimens of both series failed by pure interfacial slip, in contrast to the previous

pullout tests of Batant and Sener (1988). No visible cracking occurred in the concrete

cubes, this means that the objective of avoiding the fracturing of concrete around the bars

has been achieved and the observed post-peak softening and size effect must be attributed

strictly to the interface fracture. Some typical load-deflection diagrams observed are

shown in Fig 3 (the initial increase of the slope is due to the gradual seating of the

reaction plate). As seen in Fig. 3, the larger the specimen, the steeper the post-peak

descent. This property is characteristic of all structures undergoing damage localization.

The test results for standard and accelerated curing are shown in Table 1. It was

intended to test four specimens for each size in each set, however, a few tests did not

work out.

Dividing the maximum load by the embedded steel surface area, one obtains the

average shear bond strength, which is taken as oN. Its value for the present tests ranged

from 189 to 429 psi (1.30 to 2.96 MPa), for both sets of specimens. It may be noted that

this value is considerably smaller than that predicted by the formulas of Orangun et al.

(1977) or ACI (1983). However, these formulas are not intended for smooth bars, but for

deformed bars whose failure causes severe cracking of concrete.
Because the load-deflection diagram exhibits post-peak softening, and the softening is

not caused by geometrically nonlinear effects of buckling, one must expect a size effect

which is approximately described by the size effect law (Badant, 1984, 1991): I

qN --Go = Bft(l +3)-1/2 ()

in which • = DIDo = relative size, D = characteristic size taken as the bar-diameter,

=o = residual frictional strength, ft' = direct tensile strength of concrete (introduced solely

for convenience); and B, Do = two constants to be determined by regression of test data.

The direct tensile strength was estimated from the ACI formula f, = 6r/7' (where both

f, and ft are in psi). The residual frictional strength is determined from the final plateau
of the load-displacement diagram, as the final load value divided by the interface area.

From the present tests, ao = 3,310 psi (22.8 MPa).

As shown before, (Ba2ant, 1990) (1) can be converted to a linear regression plot

Y =AX + Gin which

Yf,(aN -o)-2, X=D (2)
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The measured data are shown as the circled points in the plot of Y versus X in Fig. 5a for

the set of specimens cured in the standard manner and in Fig. 5b for the set of specimens

cured in an accelerated manner. The regression lines Y = AX + C are also shown in these

plots. The constants of the size effect law (1) can then be obtained as B = C` 1 2 and

Do = C/A, in which A is the slope of the regression line and C is the vertical intercept.

In this manner, it has been found that B = 2.18 and D0 = 0.297 in. (7.54 mm) for the

case of standard curing, and B = 3.05 and Do = 0.198 in. (5.03 mm) for the case of

accelerated curing. The size effect plots corresponding to these parameters are shown as

the curves in Fig. 4a,b. The curve of the size effect represents a gradual transition from

a horizontal asymptote representing the strength criterion to an asymptote of slope -0.5,

representing the size effect of linear elastic fracture mechanics.

The scatter of the test data in Fig. 4 and 5 is quite large. However, large scatter

has generally been typical of bond strength measurements in the past. Despite the large

scatter, it is clear that the size effect is present and that the mean slope of the size effect

plot in Fig. 4 is intermediate between the strength criterion and the linear elastic fracture

mechanics, as expected. It cannot be claimed that the test results validate the use of the

size effect law, however, they are not in disagreement with this law.

@I
4 Identification of Interface Characteristics from Size Effect

In a previous study, Baiant and Desmorat (1994), assumed that the stress-slip law, that is.

the relationship of the shear stress r at the interface to the relative slip v at the interface,

has the form shown in Fig. 6. The softening is considered to be linear, starting from

the shear bond strength rd, and there is a terminal shear stress rf, representing friction.

The area under the softening diagram above the frictional plateau (cross-hatched in Fig.

6) represents the interfacial fracture energy Gt per unit area of the interface_ Its value

determines the softening slope in Fig. la.

In the previous analysis the interaction of the reinforcing bar (or fiber) with the sur-

rounding matrix was simplified as a one-dimensional problem. This means that the con-

crete surrounding the steel bar is treated as a bar in which the cross sections remain

plain. Under this simplification, it was possible to obtain for the size effect an analytical

solution that was sufficiently simple for the purposes of identification of interface material

characteristics rdj, ,'r and Gf. It was possible to solve these characteristics explicitly in

terms of the parameters of the size effect law (1).

Two cases had to be distinguished in the previous solution: (1) The interface slip

6

I



cracks join before T/ is reached (Fig. 7, left), and the (2) T! is reached before the cracks

join (Fig. 7, right). The following equations have been obtained for these two cases:
S 8r• w•L

a 8 sin--- for wL <2 arccos - (3)

D _ + -•4i- L - 2 arccos if for ,L > 2arccos i- (4)
TJFI wD (Wr d

The superscripts I and II label the first and second cases; ad. is the maximum axial stress

in the bar; w2 = 4(1 + 0),rd/EIvoD with 0 = AjE1 /A,,E, where A1 = rD 2/4, A., =

r(d2 - D2)/4; v0 is the critical slip shown in Fig. 6; D = reinforcing bar diameter; and

d = outer diameter of the effective cross section area of the concrete (matrix) surrounding

the steel bar.

When geometrically similar specimens are considered, LID and d/D are constants.

From Eqs. (3) and (4) one can plot the size effect curve of log ai,0 versus log D. This J *
curve has the same asymptotes as the size effect law (1) plotted in (4). By matching

these asymptotes to the horizontal and inclined asymptotes of the size effect law (1), it

has been shown that

'd = B' +r,• (5)

I + (Bf,)2Do 1 "2 "arccos 2 (6)

These equations make it possible to determine the values of the interface fracture charac-

teristics. However, before these equations are evaluated, one must determine the residual
frictional shear stress, which is simply given by

D
-j= ao (7)

The interfacial fracture energy can then be calculated as

2 T '=o kT1 2" (8)

Eqs. (6)-(8) have been applied to the size effect parameters obtained front the present

test results. The resulting values of the interface fracture characteristics for the specimens
cured in standard manner and in accelerated manner are listed in Table 2. The values of

the debonding stress rd (interface shear strength) and the residual frictional shear stress

7
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ry are similar for both methods of curing, however, the interfacial fracture energies are
quite different and the post-peak softening is steeper for the accelerated curing tests. 0

The present test data, however, are too limited and their scatter is too high for de-
termining the precise shape of the stress-slip law for the steel-concrete interface. The
softening curve of the stress-slip law may of course be a smooth curve and may be more
complicated than that in Fig. 6. The characteristics of the stress-slip law in Fig. 6 that 0
have been identified from the test data should be regarded as merely approximate.

5 Conclusions

1. Slip and shear fracture at the steel-concrete interface engender a size effect on the 0

nominal strength of structure, even if no fracture takes place in concrete. This
implies that the interfacial stress-slip curve must exhibit post-peak softening.

2. The size effect caused by interface slip is transitional between plastic limit analysis 0
and linear elastic fracture mechanics and is in agreement with the general size effect
law proposed by Badant (1984) on the basis of energy release analysis or dimensional
analysis with similitude arguments.

3. The interface fracture characteristics, including the interface fracture energy, inter- 0

face shear bond strength and a residual frictional strength, can be identified from the
results of tests of the size effect in bar pullout from geometrically similar specimens
of different sizes.

I

4. To be able to identify the interfacial shear fracture characteristics from the size
effect tests, it is necessary to design the tests in such a manner that the failure is
due exclusively to interfacial slip, with no cracking in the surrounding concrete. In
the case of reinforced concrete, this can be achieved by using smooth round bars
(with no lugs) of a sufficiently large rate of bar diameter to embedment length for

interface slip analysis.
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Table 1: Test Results for Standard and Accelerated Curing Specimens

Standard Curing Accelerated Curing
Diam. Cube Max. Load a&,, Diam. Cube Max. Load adin

D Side (Ib) (psi) D Side (Ib) (psi)
(in) (in) (in) (in) -_
1.5 1/8 253 16297 1.5 1/8 230 18742
1.5 1/8 171 18229 1.5 1/8 175 14260
1.5 1/8 224 13957 1.5 1/8 201 16379
1.5 1/8 200 20616 3 1/4 613 12488
3 1/4 561 11429 3 1/4 588 11979
6 1/2 3605 18360 3 1/4 859 17499
6 1/2 3500 17825 3 1/4 763 15544
6 1/2 2700 13751 6 1/2 1781 9070
12 1 10300 13114 6 1/2 3750 19098
12 1 8009 10117 6 1/2 2249 11454
12 1 7754 9872 6 1/2 3247 16537

Table 2: Fracture Characteristics Identified from Tests

28-day standard curing accelerated curing
Tr 68.9 psi (0.47 MPa) 87.1 psi (0.59 MPa)
rd 400.3 psi (2.76 MPa) 429.3 psi (2.96 MPI)
vo 2.9 x 10- in. (75.4 x 10- nMM) 1.4 x 10- in. (35.6 x 10- mm)
Gi 72 J/m 2  34 J/m2
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Figure 1: (a) Geometry of pullout tests specimens, (b) loading frame and test arrange-
ment.

Figure 2: Set of test specimens of various sizes (before testing) and of the test setup for
the 6 in. specimen.

Figure 3: Typical load deflection diagrams for specimens of various sizes (for standard
curing and for accelerated curing). I

Figure 4: Size effect plots of the test results in double logarithmic scales and their optimum
fit by the size effect law; (a) for standard curing, (b) for accelerated curing.

Figure 5: Linear regressions of the test data according to the size effect law; (a) for
standard curing, and (b) for accelerated curing. 7 I

Figure 6: Stress-slip law for the steel-concrete interface.
I

P Figure 7: Two types of interface shear stress distribution at maximum load.
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SUMMARY

The paper presents a simple approximate analytical solution of the remote stream that cause the collapse of
a borehole or other circular cylindrical cavity in an infinite elastic spew Region of parallel equidistant
splitting cracks are assumed to form on the sWies of the cavity. Their boundary is assumed to be an ellipse of
a growing horizontal axis, the other axis remaining equal to the borehole diameter. The dabs of rock
between the splitting cracks are assumed to buckle as slender columns, and their post-crtical stress is
considered as the residual stress in the cracked rock. The buckling of thene slab columns i assumed to be
resisted not only by their elastic bending stiffness but also shear stresses produced on rough crack faces by
relative shear displacements. The energy release from the infinite medium caused by the growth of the
elliptical cracking repon is evaluated according to Eschelby's theorem. This release is set equal to the energy

* dissipated by the fmbation of all the splitting cracks, which is calculated under the assumption of constant
fracture energy. This yields the collapse stress as a function of the elastic moduli. fracture energy, ratio of the
remote principal stresses, crack shear resistance characteristic and borehole diameter. The collapse stress as
a function of crack spacing is found to have a minimum, and the correct crack spacing is determined from
this minimum. For small enough diameters, the crack spacing increases as the (4/5)-power of the borehole
diameter, while for ui&re enough diameters a constant spacing is approached. In contrast to plastic solutions,
the breakout stress exhibits a size effect, such that for small enough diameters the breakout stress decreases
as the (- 2/5)-power of the borehole diameter, while for large enough diameters a constant limiting value is
approached. Finally, some numerical estimates are given and the validity of various simplifying assumptions
made is discussed.

1. INTRODUCTION

The sudden catastrophic collapse of boreholes in rock. called the breakout, as well as the collapse
(such as rock burst) of various other types of cavities due to high compressive stresses in the rock
mass, has been studied extensively and various important results have been obtained.1 -22

However, most studies have been based on the theory of plasticity, which does not give
a suffMoisuy realistic description of the inelastic behaviour of rock, except at very high confining

* Walter P. Murphy Proksoor.
'Assistant Proksmor.SProfessor and Director.
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pressurs. Such pressures, however, never exist near the sides of cavities. Cavities usually appear
to fail due to fracture of rock. and the failure process is described by fracture mechanics better
than plasticity. A fully realistic description would no doubt require a combination of both
theories, but the analysis would then become rather complicated.

The most important practical consequence of fracture mechanics is that it predicts size effect.
that is. the remote compressive stress that causesa borehole to fail must decrease as the borehole
size increases. On the other hand, according to plasticity bor any other failure theory expressed in
terms of stress and strain), there is no size effect. But the existence of the size effect has been
detected experimentally (e.g References 19, 23. 24).

Fracture mechanics has so far been well developed only for tensile fractures. and to some extent
shear fractures. their microscopic mechanism, however, still usually consists of tensile cracks.
Compressive fractures are not very well understood at present, although it is clear that their
mechanism involves, in one way or another, some form of tensile cracking depending on the
structure geometry. The purpose of this study is to formulate appropriate simplifying assump- p
tions and use fracture mechanics concepts to obtain an analytical solution of borehoie collapse
that reveals the size effect and is sufficiently simple to be clearly understood-one benefit that
numerical solutions cannot provide. The plasticity aspects of failure will have to be neglected to
make an analytical solution feasible. The reality may be expected to be somewhere between the
solutions of plasticity and fracture mechanics, but probably in most situations much closer to the
latter. p

2. ENERGY RELEASE DUE TO GROWTH OF ELLIPTICAL CAVITY

Consider a circular cylindrical borehole of radius R and horizontal axis z in an infinite elastic
space that is in a state of plane strain (Figure 1a) and is subjected at infinities to uniform
compressive stresses a.. and o,: in the directions of Cartesian co-ordinates x and y. We will P
assume that failure tends to enlarge the circular cavity into an ellipse of horizontal axis a > R,
with the vertical axis remaining equal to R.

Based on Eshelby's solution of the stress field and using the superposition method, explained in
detail for example by Mura,2' one can calculate the loss of the potential energy (per unit
thickness in the z-direction) of an infinite, initially uniformly stressed elastic space caused by
cutting out an elliptical hole P

Anll = - I-[(a + 2R)Re4® + (2a + R),au,® - 2aRu, ao,.] (1)

where E' = E/(I - v), E = Young's elastic modulus of the rock, v = Poisson's ratio, and
v v/( I - v). IA represents the sum of the work of the stresses on the strain changes outside the
ellipse, which are non-uniformly distributed and decay with the distance from the ellipse, and the
work of the stresses on the strain changes inside the removed elliptical cutout, which are,
according to the famous Eshelby's theorem, uniformly distributed within the ellipse.

* Equation (I) gives the potential energy change when the stresses within the elliptical region are
reduced to zero. Later we will need also the potential energy change Anl' when the initial vertical

• 'stress a,. is reduced to a certain finite critical stress or,, rather than to zero. In that case the
calculations according to Eshelby's theorem yield

Ar11 . - --• + 2R)Ro. + (2a + R)adr2 - 2aRae..,f - 2a 2 4] (2)

Equation (1) may be checked by considering the limiting case R -*0, for which the elliptical hole

_ ml
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Figure I, (a) Growth of an ellipacil crackingl regiOn from a circular boreboke and ()hi lmi care of a crack

S~becomes a horizontal crack (Figure 1lb). In that case Equation (1) reduces to:

This coincides with the expression for the energy loss of an inlinite space due to creatinlg a crack of
length 2a. Indeed, as is well-known (e.g. References 26 and 27), the energy release rate per crack tip
is Kt?/E' where K, - u,. ./(ire) - stress intensity factor, and by integrating one has, for both

* crack tips combined, All = 2J(KI/E')da, which is the same resuht as equation (3).

Proof of equaon (2). Consider an infinite elastic body subjected at infinity to a uniform
i ~applied streuines qr., Jet a uniform eigenstrain e* be applied to an ellipsoidal domain 0J contained

* in this infinite body. The values of the cigenstrain t* are such that the stress is zero every **here in
the ellipsoid after s* is applied. This means that (if the infinite body is free from any external force)
the stress in the ellipsoid induced by:g wiillbe - .®. Because the stress is zero everywhere in the
ellipsoid, the ellipsoid can be cut out from the infinite body without affecting its stresses and
deformation. Thus, the change of potential energy of the infinite body caused by the applied
eigenstrain is the same as the loss of potential energy caused by cuttinlg out the ellipsoid from the

S.. ~~~ ~~~...................."..... . .. •"-•'. . ........................ ............. • a- - m.....-* ...
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infinite body. This potential energy loss can be calculated as follows (e.g. Reference 25):

an' -" - 2 f a *dV - fa TDs* dv a,- - G g -l G g 141

where V is the volume of the ellipsoid, so and a are the stress vectors in the ellipsoid when the
infinite body is subjected to external forces alone or eigenstrain a* alone, respectively.

If plane-strain cases are considered, the ellipsoid becomes an elliptic cylinder and the relation-
ship between eigenstrain g" and the stress induced in the elliptic cylinder is:25

R2 + Rt' + RM R
T- (a+Re aR I -I(a+R )a+R

2pv a* (5)
2-v a+

1 2 a2 + 2aR a] u a

1-{ (a+R)2 teJ -+ R -V(a + R) a +

2pUv R ji. ,(6)
I-va + R f 6

- 2jiv a s 2pv R 2* Z (7)
I-v a+R lva+ R- (

where p and v are the Lan constants; a and R are the axes of the ellipse in the x- and y-directions.
If the applied stress components at infinity are a.. and ey. the stress component in the
z-direction is v(#,. + a,®). Substituting - a,., - 0,0 and - V(Iff + u,e) for V,, a, and a, in
the above three equations and solving them, we obtain the eigenstrain components

S(v- 1)(a + 2R) a..) + 1-v

I - v (v - l)(2a + R)
s*= 2l - a.) + 2PR (-#,C) (9)

with z: = 0. The energy loss An1 per unit thickness in the :-direction can now be calculated from
substituting the above expressions into Equation (Al).

Vl _ -V V4'T - - xaR + O,

An -( - .)g -T - ( + + ,)

=-2,[(a + 2R)o®. + (2a +R)u -R 2RWe..or] (10)

where E - 2(1 + v)p and E' = E/(l - v2).
Now consider the loss of poteptial energy when a uniformly stressed infinite body is cut by an

elliptic cylinder whose surface tractions along the surface of the elliptic hole corresponding to the
uniform stress state a, = a,. with other components being zero. The loss of potential energy for
this case is expressed similarly to equation (4), except that one term must be added as follows:

V T VAnl a - go - Veit - ( + 0•) (11)
2 2

W- _ __ __ _ _ R M
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Here the last term represents the elastic strain energy stored in the elliptic cylinder when both the
external forces at infinity are applied and the eigenstrain c* occurs. e is the elastic strain vector in
the elliptic cylinder. Substitution of the expressions for a. so, t* and e into equation (1I) finally
yields

V V o
An - - + a-,, + , -v[a.* + OF,% - -O.- (12)

Substitution of equations (8) and (9) then proves equation (2). QED
Equation (1) gives the potential energy change from the case of no cavity to the case of an

elliptical cavity. By setting in equation (I) a = R, we get the potential energy change from the case
of no cavity to the case of circular cavity of radius R (Figure Ia):

irR2
Alo = - 2E--(3aO2• + 3a,. - 2av. ,a) (13)

2E'YV'

Subtracting equation (13) from equation (2), we obtain the potential energy change when the
stress in the regions between the original circle and the circumscribed ellipse is reduced from
aat to Oif

An -= An, - Ano. x - [(aR - R')arx'. + (2a2 + Ra - 3R2)ay',

+ 2R(R - a)a~,, a - 2a 2 4o] (14)

* 3. RESIDUAL STRAIN ENERGY AFTER COMPRESSION FRACTURING

Ifa, = 0, the foregoing expression includes the release of all the strain energy originally stored in
the zone between the ellipse and the original circle (Figure 1 c). However, it is a particular feature
of compression fracturing that this zone cannot be assumed unloaded to zero stress. Compression
fracture in quasibrittle microinhomogeneous materials such as most rocks initiates as a system of
parallel, roughly equidistant, splitting cracks having the direction of the minimum principal stress
(in our case ,F,). These vertical splitting cracks (which initially cause exfoliation at borehole
surface and later extensive slabbing'-'- . 2.), may eventually get organized to form inclined
bands, equivalent to shear bands (Balant and Olbolt 29

% which in our case may be imagined to
form along the contour of the ellipse. This aspect, however, does not seem to be essential for
calculating the residual strain energy.

Now what is the mechanism that dictates the residual vertical stress au? If the spacing of the
vertical cracks is relatively small, the stress that can be carried by the thin slabs of the material
between the adjacent vertical splitting cracks must obviously be limited by elastic buckling"0 (this
is a discrete version of the idea proposed, for an elastic continuum weakened by smeared parallel
cracks, in Reference 31; see also Section 11.7 in Reference 32). So we will consider that these slabs
(Figure 1), of thickness h, buckle in the manner of fixed-end columns of a certain length 2L, equal
to the crack length.

It is now useful to recall the initial post-critical behaviour of a perfect elastic column (e.g.
Section 1.9 in the textbook of Balant and Cedolin' 2 ). The diagram of the axial load P of such
a column versus the axial load-point displacement u becomes nearly horizontal upon reaching the
critical load, i.e. the Euler bifurcation load (the post-critical slope is still positive, equal to P,./2L.
but this is negligible compared to the pre-critical slope) see Figure 2. According to this idea, the
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(a)

(b) (C)

f T- -Fr - t
h

Figure 2 (a) Diagram of axial load vs. axiai load-point displacenmet for column buckling. (bi simutaneou buckling of
rock slabs between parallel cracks. and 4c0 crack shear streses

vertical compressive stress in the parallel slab-columns of thickness h will not be zero but
X 2 E'I X2 E'h'

o=-Z LA A • (I5)

where I - h3/12 - t•ttroidal moment of inertia of the cross-section of the slab (per unit
thickness in the z-direction), h = spacing of the equidistant splitting cracks, and L = average
(effective) half-length of the vertical cracks at the moment of failure.

We will now assume the deformation fields at the moment of failure of small and large
boreholes (i.e. the modes of failure) to be geometrically similar, proportional to the borehole
radius R. This means we assume that

L - kR (16)

where k - empirical positive constant < 1. (Ths assumption is supported by the following
argumuot if L were not proportional to RX then we would have L - kR*, where n = constant
# I; but then, for increasing X the ratio LIR would tend either to infinity or to zero, that is, the

mechanism of collapse would change, which seems irrationaL)
In contrast to tensile cracks, the compression splitting cracks have one particular prop-

erty-their opening displacement is, according to the present model of simultaneously buckling
parallel slab-columns (Figure 2b), zero. At the same time, the cracks in rock are rough and
transmit shear stresses T when the opposite faces are subjected to shear. Now, to accomodate the
buckling deflections of the adjacent slabs, relative shear displacements A between the contacting
crack faces must inevitably arise (Figure 2c); A - w'(y)k, where w(y) - deflection curve of each
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01 R

Figure 3. Calculated depMedence of remote effective stress causing borehole collapse on the borehole radius

slab-column. The shear stress transmitted across the crack due to surface roughness (Figure 3)
may be approximately assumed to be proportional to &A thus. r = GT7., where 7,f - A,; = Wh ='..

G = elastic shear modulus of rock and ;. = empirical length = material property representing the
thickness of an intact rock layer whose elastic shear relative displacement due to unit shear stress
is the same at that between the crack faces. The shear stresses acting from both sheared cracks
exert on the slab-column a distributed moment m = rh(Figure 2c). The moment differential
equation of equilibrium of the slab-column is M' + Pw' + m' = - V, where M = bending mo-
ment, V= shear force and P = - a, h = axial compression force. Therefore, the differential
equation for the deflection curve is E'1w'" + (P - Gh=/A)w" - 0, where I = h1/12. The lowest
critical stress for fixed-end boundary conditions is then easily found to be

x2E'h2  G
oG, = 12L 2  (17)

The work of shear stress T is not included in the strain energy since crack shear is inelastic,
irreversible (this work might be included in the dissipated energy expression, but it is negligible at

* the start of buckling.
The residual strain energy (per unit thickness in the :-direction) contained between the ellipse

and the initial circle is given by the bending energy of all the slab-columns, which may now be
approximately expressed as

a,2  xR(a R)(n 2 E'h2  h 2
fl.r= (Ka-tXR2) = I -- +G (18)

4. ENERGY DISSIPATED BY FRACTURING AND ENERGY BALANCE

The energy dissipated by fracturing of the rock is the sum of the energies dissipated by all the
vertical splitting cracks, i.e.

AW, =( naR - xR2) (19)

(per unit thickness in the z-direction), in which Gf(/h is the energy dissipated per unit volume of the
rock and Gf is the fracture energy of the rock (G( = K /E', where Kk - fracture toughness of the

* rock).
The net energy loss due to passing from a circular borehole in intact rock to an elliptical

damage zone with vertical splitting cracks now is, instead of equation (14),

An= An,; - Aro + 1I. (20)

I
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The energy balance (principle of conservation of energy) requires that - Ali - AWE. Assuming
the parallel cracks to form progressively, one after another, we need to differentiate equation ( 14)
with respect to a. Thus, we get the incremental energy balance condition:

-(Anl)- = em) (21)
ea e

which yields

a-C R2E'. + (4a + R),,-2 - MvP - 4aG,2 = 2E'.I2k2 R2 + AG + T (22)

We are interested in the start of borehole breakout, which occurs when a = R. Substituting this
value of a into the last equation, we obtain

"" +2 VIP • 2E'G1a2® -o2 2a, a, - 4'toz = k- -_ + I +) (23)
ye ZZY r li2k 2 R2 A h (3

Now, introducing the following definition of the effective applied stress:

= =or --S + 02 (24)

and denoting
(X2EV/, h 2: 2F-'G,

F(R, h)= x2-E-h + 2_ +2-- (25)
l12k 2R2  A 5 h

Equation (13) may now be written simply in the form

.2 = F(R, h) (26)

where F is a function of R and h.
The question now is how to estimate the spacing h of the vertical splitting cracks. In this regard,

it is interesting to note that F(R, h) as a function of h possesses a minimum. From this, a new,
simple concept comes to mind.-' The spacing h that will occur is that which minimizes the
applied effective stress a.(. In other words, the splitting cracks will occur at the lowest compres-
sive stress they can (this concept could be proven on the basis of the Gibbs' statement of the
second law of thermodynamics in the manner shown in Chapter 10 of the textbook of Balant and
Cedolin).3 The necessary condition of minimum is that

eF(R, h)hA = 0 (27)

After substituting equation (25) for F(R, h) and differentiating, we obtain

OE'2 l 2 E'Gh4 5GI 3E (28)
7-2-k-R + 12k'R 2.1 + A2  - E'Gf = 0 (28)

This is an algebraic equation of fifth degree for h. Although a numerical solution would be easy,
a closed-form solution of h is not possible. However, it will suffice to examine the asymptotic
cases.

For sufficiently small R, the terms with h'4 and h' become negligible compared to the term with
hs, and the solution then is

A CR CS (72ksl(fml(9t,= ~s•' c.= 5-• ] (small R) (29)
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From this result30 we see that the spacing of the splitting cracks should increase with the borehole
diameter. This property has been observed by Cook3" and co-workers.

On the other hand, for sufficiently large R. the first two terms of equation (28) may be neglected,
and the solution is

h = (E ) = constant (largeR) (30)

If we substitute equation (29) into equation (26) and take the asymptotic approximation of
equation (26) for small R, we obtain

C3 R 2. C' = I 51-2-E' 3Gf (small R) (31)
48V

while, if we substitute eluation (30) into equation (26) and take the asymptotic approximation of
equation (26) for large R, we obtain

(GE'G 1,1 3a.( = 3= Co = constant strength (large R) (321)

For the intermediate values of R we cannot get a closed-form expression. However, the
.. _following combination of equations (31) and (32) has the right asymptotic properties for both

small and large R and is probably a good approximation that should suffice for practical
purposes:

a.( %,• C, R-"s + Co (33)

5. DISCUSSION OF SIZE EFFECT AND NUMERICAL ESTIMATES

Equation (19) indicates that there is a size effect, which is understood as the dependence of the
nominal stress at failure (nominal strength, in our case coincident with a.() on the size-in our
case the borehole radius R, provided that geometrically similar situations are compared. A basic
property of plasticity, as well as all other theories with failure criteria expressed in terms of stress
and strain tensors, is that there is no size effect (see e.g. Reference 32, Chapters 12 and 13, and
References 34-36). Linear elastic fracture mechanics (LEFM) exhibits in general the strongest
possible (deterministic) size effect-the nominal strength decreases as size- -.

Since the foregoing analysis used LEFM. it is. thus, interesting to realize why the size exponent
in equation (31) is - 2/5 rather than - 1/2. The reason is that, instead of localizing into a single
dominant crack, fracture has been assumed to be distributed over a large zone with an area
proportional to the diameter of the borehole. If we assumed a single splitting crack with a length
proportional to the borehole diameter, the exponent in equation (31) would have come out as
- 1/2. On the other hand, the exponent would have come out as 0 (i.e. we would have no size

effect even for small R) if we assumed the crack spacing h to be the same for every borehole
diameter, with the cracking zone area proportional to the diameter (in this case the energy
dissipetion due to fracture per unit volume would be constant, independent of the borehole
diameter, same as in plasticity). It is because of the theory of elastic buckling (and because
L increases with R) that we found the crack spacing to increase with the borehole diameter less

* than proportionally. It is for this reason that the size effect exponent in equation (3 1) has come out
to be intermediate between - 1/2 and 0, that is, intermediate between the exponents for
single-crack LEFM and for plasticity.

IJ



10 ZDENtK P WAANT ET 4L

The fact that the compressive stress that causes borehole breakout exhibits a size effect has
been observed experimentally"' and has been also predicted by finite element models of
non-local type, for example models with couple stresses.' 3-

The foregoing analysis tacitly implied the assumption that the failure mode of the borehole is
symmetric. Based on the experience with certain other fracture problems (Reference 32, Section
12.5 and Reference 38), one may expect that the loading path might exhibit a bifurcation. after
which the failure process proceeds along a non-symmetric secondary path. corresponding to
a borehole collapsing non-symmetrically, only on one side of the cavity. Unfortunaltely. the
non-symmetric collapse mode does not seem amenable to a simple analytical solution. The
present symmetric solution should represent an upper bound on the actual critical stress for
collapse. It may also be pointed out that the symmetric and non-symmetric response paths
probably give the same type of size effect and dependence on other basic parameters. Thus, it may
well be possible to use the present solution at least qualitatively, even if the actual collapse is
non-symmetric.

Another important simplification has been our use of LEFM. The fracture of rock, of course,
shows significant departures from LEFM (e.g. References 35 and 39). This may be approximately
described by assuming the energy release rate required for fracture growth to be variable (rather
than being equal to constant Gf) and to increase with the crack length a according to a given
function R(a) called the R-curve (resistence curve). If an increasing R-curve were introduced into
the present type of analysis, the resulting size effect would become weaker. However, measure-
ments of the R-curve for the present type of situation are lacking. It is debatable whether any
increase of R(a) is appropriate at all when many parallel closely spaced cracks propagate
simultaneously, or when the cracks are much longer than the size of the inhomogeneities in rock.

Related to possible R-curve behaviour, the splitting cracks in rock may be discontinuous,
capable of transmitting some reduced transverse tensile stresses as well as shear stresses.
Capability of shear stress transmission must further arise from the fact that these cracks are no
doubt rather tortuous, permitting interlock of the asperities opposing relative slip of the crack
surfaces which must take place during buckling. These properties, which have been neglected.
would increase the value of a,,.

A further simplification has been the geometry of the cracking region. Experimental observa-
tions of borehole breakout show that the cracking regions on the sides of the borehole tend to
have a roughly triangular shape and generally a smaller height than the length of the vertical
cross-sections of the ellipse (Figure 4). But for such geometry a simple analytical solution would
probably be impossible. Moreover, implicit to our assumption of an elliptical cracking region has
been the hypothesis that the cracking regions for boreholes of different diameters are geomet-
rically similar and their size is proportional to the borehole diameter. If the ratio of the average
length of the splitting cracks to the borehole diameter decreased with increasing borehole
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diameter (i.e. the cracking localized), then the size effect would be stronger than we have
calculated.

Let us now consider rock properties typical of limestone; Gr - 31 J/m2 , E' - 30 GPa and
G w 11.25 GPa. To estimate ;, we exploit the similarity of rock to concrete, for which extensive
crack shear tests have been conducted. Taking the results of Paulay and Loeber's' 0 tests plotted
in Figure 2 of Balant and Gambarova." we have, for crack opening displacement
6. = 0125 mm, rt/A % 40 N mm3 , which yields for i the value of 0-25 m. No results seem to be
available for 6. = 0, however, we may use Paulay and Loeber's tests for 6. -> 025 and 0-50 mm to
approximately extrapolate to 0; this leads to the crude estimate ;. = 0 I m, which we will use.
Nevertheless, there is enormous uncertainty about the value of ;, especially for the small initial
displacements that matter for initial buckling.

From equation (32), for very large R we have a.( = 82.7 MPa (12.000 psi). This means that
a sufficiently large borehole would break out at the depth of about 3000 m below the earth
surface. This is certainly a reasonable estimate, as an order of magnitude. However, the corres-
ponding value obtained for the spacing of the splitting cracks, which is obtained from equation
(30) as (&25 mm. does not seem reasonable, since at such a small spacing LEFM ceases to be
valid and the aforementioned Gr-value. obtained on laboratory samples, is probably inappli-
cable. But the aforementioned differential equation for buckling degenerates to the form w" = 0,
i.e. the slab-columns do not bend at all, which signifies that the idea of buckling makes no sense in
the limit case R -* c. Probably, the constant Co in equation (32) should be interpreted merely as
an empirical large-scale compression strength limit, rather than a theoretical value derived by
slab buckling analysis.

Next consider a borehole of radius R = 0-2 m and assume that k - &25. Equation (31) then
yields cUf = 21.7 MPa (3140 psi), which is the stress at the depth of about 740 m. From this result
we observe that, if the crack shear resistance were neglected, the predicted breakout stress would

* be, compared to experience, much too low, by an order of magnitude. This shows that some other
mechanism, which we proposed to be the crack shear resistance, must serve to elevate the
breakout stress by an order of magnitude. Together with the foregoing value associated with
crack shear, equation (33) yields the estimate a.( - 104.4 MPa (15,140 psi), which corresponds to
depth 3740 m. The thickness and length of the slab-columns are obtained as h = 2-6 mm and
L = 50 nun. For such a close spacing, the cracks are more likely to be discontinuous rows of
microcracks than continuous cracks, and the crack tortuosity due to heterogeneous microstruc-
ture is likely to cause significant local weakening of the slab-columns. In that case, the formula for
buckling of a perfect column of a uniform cross-section might be too far from reality and
imperfections might have to be introduced into the buckling analysis. Nevertheless, the aspect
ratio of the slab columns, L/h = 19.2. is certainly just right within the range where the carrying
capacity is indeed governed by the theory of buckling of slender columns.

In the preceding numerical estimation, the size-independent part due to crack shear resistance,
Co, dwarfs the size-dependent part due to bending stiffness, C3 h- A-. One must be aware,
though, of the strong speculative nature of the foregoing estimates. Particularly, the value we used
for A is highly uncertain, and so is the value of k. Consequently, the values of Co and C, could be
quite different, and the magnitude of the size-dependent term could be relatively much more
significant than in the foregoing calculation. Experimental studies are needed.

71The preceding analysis of crack shear ignored the volume expansion which is always caused by

the slip of rough cracks. This expansion is partially prevented by the surrounding rock, which
causes hydrostatic compressive stress to develop in the cracking zone. When the volume
expansion is not opposed, as in prismatic test specimens with lubricated ends (Appendix I), the
crack shear stiffness may be very low, and when it is completely pree-ted, very high. In addition
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to this, the energy of hydrostatic compression needs to be subtracted from the energy that is
released from the surrounding rock, which means that less energy is available to create the
splitting cracks. This may well be another reason why the collapse stress estimate from the
slab-column buckling analysis seems much too low.

6. SUMMARY AND CONCLUSIONS

The basic simplifying hypotheses of the present solution may be summarized as follows:

I. The compression failure of rock on the side of the borehole is caused by densely distributed
parallel splitting cracks in the direction of the minimum principal stress, rather than by
plastic yielding.

2. The zones of parallel splitting cracks for boreholes of various diameters are geometrically
similar and the length of these cracks is proportional to the borehole diameter.

3. For estimating the energy release, the inner boundary of the infinite elastic solid may be
considered to expand during failure from a circle to an ellipse.

4. After uniformly spaced splitting cracks parallel to the minimum principal stress develop, the
region between the ellipse and the original circle retains a certain residual stress governed by
post-critical buckling behaviour of the rock slabs between the cracks.

5. The residual stress value is governed by buckling of rock slabs between the splitting cracks.
6. The buckling stress can be approximately calculated from the average length of the splitting

cracks, which is assumed to be proportional to the borehole diameter.
7. Buckling of the slab-columns is resisted not only by their elastic bending stiffness but also by

shear stresses produced at the rough crack faces by crack shear.
8. The energy (per unit area) required for crack growth in rock is constant, i.e. independent of

the crack length and spacing.

The following basic observations and conclusions can be made:

I. Considering the boundary of the cracking region in borehole breakout to be symmetric and
elliptical, and assuming the energy that drives the parallel compression splitting cracks to be
released due to buckling of the slabs of rock between the cracks, one can obtain a simple
analytical solution for the collapse stress.

2. The dependence of the collapse stress on the spacing of the splitting cracks exhibits
a minimum, and the actual crack spacing may be considered to correspond to this
minimum.

3. Borehole b.eakout exhibits a size effect such that, for sufficiently small diameters, the
effective breakout stress decreases as the ( - 2/5) power of the borehole diameter. For
sufficiently large diameters, the size dependence disappears.

4. For sufficiently small diameters, the spacing of splitting cracks increases as the (4/5)-power
of the borehole diameter, while for sufficiently large diameters a constant spacing is
approached.

5. The energy release calculation for a growing ellipse according to Eschelby's theorem also
predicts the effect of stress triaxiality, i.e. of the ratio of the remote principal stressesI [equation (24)] (which is different from the result obtained by plastic analysis).
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APPENDIX I: COMPRESSION STRENGTH OF A PRISMATIC SPECIMEN

The present use of buckling analysis has been inspired by a similar previous analysis of
a prismatic specimen of length L and width b;3° see Figure 2(b). We assume that compression
failure is caused by the formation of a band of vertical splitting cracks of length a and spacing
h and is accompanied by buckling of the slabs between the cracks which behave as fixed-end
columns. The initial longitudinal stress vo in each slab is reduced by buckling to
a, = - (E'h 2 /3)x 2/a 2. The total energy loss due to buckling is- All = /Lb(o2 - avj/2E'. The
number of cracks is b/h and the energy dissipated by fracture is A Wf = aGfb/h. Energy balance
requires that - An = A Wf. From this, the stress required for the formation of the band of
splitting cracks is

2 2EGf a + 'E' 2 ,
go h +L h4 (34)

We see that this expression has a minimum as a function of the crack spacing h. From the
necessary condition of a minimum, ?(ur)/a~h = 0, we find that

h a (9G 1  15 (35)

Substituting this into equation (21), we conclude that the specimen fails at the stress

Go - C1L-2 /s, with C1 = (,,/27712E'3G )1/S (36)

This size effect is the same as found for a borehole. Note also that Oo is independent of band width
a, which means there is no tendency for the band width to localize.
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Abstract
The lecture consists of two parts. The first part presents a rigorous mathematical analysis
of scaling in various basic types of failure. First it is shown that the scaling law is a power
law if, and only if, a characteristic dimension is absent. For all the theories in which the
failure condition is expressed in terms of stress or strain only, including elasticity with a
strength limit, plasticity, and continuum damage mechanics, the nominal strength of the
structure is shown to be independent of its size. For linear elastic fracture mechanics, in
which the failure criterion is expressed in terms of energy per unit area, the scaling law
for the nominal strength is shown to be (size)- 1/ 2, provided that the cracks in structures
of different sizes are geometrically similar. When the failure condition involves both the
stress (or strain) and the energy per unit area, which is typical of quasi-brittle materi-
als, the scaling law represents a gradual transition between asymptotes corresponding to
the strength theory and LEFM. The size effect described by Weibull statistical theory
of random material strength is also considered and the reasons for its inapplicability to
quasi-brittle materials are explained. The second part of the lecture focuses attention
on compression failures, particularly the failures of reinforced concrete columns, in which
the size effect has recently been observed experimentally. This size effect is explained
by energy release due to lateral propagation of a band of axial splitting cracks, taking
into account buckling of compressed slabs of the material between adjacent axial splitting
cracks and their postcritical deflections.
Keywords: Fracture Mechanics, Size Effect, Scaling Laws, Quasibrittle Materials, Con-
crete Structures, Compression Failure, Columns, Damage Mechanics, Plasticity.

Introduction

The problem of scaling is the most fundamental aspect of every physical theory. If the
question of scaling is not understood, the problem itself is not understood, there is no
theory. Questions of scaling have historically been the driving force of advances in physics.
When the classical Newtonian mechanics failed at very large scales, the theory of rela-
tivity had to be invented, and when it failed at very small scales, the theory of quantum
mechanics had to be invented. The questions of scaling played a dominant role in the



evolution of fluid mechanics; recall for example the Reynolds number and other numbers
characterizing fluid flows at different scales.

In structural mechanics the questions of scaling have for a long time been neglected.
From the practical viewpoint, this is perhaps not too serious for mechanical and aerospace
engineers, who can test all their structures and components a full size, and for whom the
main question is extrapolation in time rather than in size. For civil engineers, however,
the question of scaling is paramount. Many civil engineering structures cannot be tested
at full size, and the engineer must inevitably extrapolate from reduced scale laboratory
tests to much larger structure sizes.

The reason that the questions of scaling have been neglected is that the classical
theories of failure, in which the failure is determined by stress or strain at a critical
point of the structure or is characterized by a constitutive law in terms of stresses and
strains, exhibit no size effect. However, beginning with Griffith, it has been recognized
that rational analysis of failure must take into account the energy release caused by failure
and its balance with the energy needed to produce fracture or damage zones. Any theory
in which the failure depends on the energy release inevitably leads to a size effect.

In quasibrittle materials such as concrete, the size effect is more complicated than it is
for linear elastic fracture mechanics. The size effect for tensile failures (which includes also
shear failures) has been studied for various kinds of concrete structures. An approximate
size effect law which agrees with experiments as well as certain theoretical deductions
has been developed. There is no doubt that the size effect needs to be introduced into
the provisions of the design codes for concrete structures which deal with diagonal shear

6 failure of beams, punching shear failure of slabs, torsional failures, pullout of bars and
anchors, failure of splices, etc. However, although the principles appear to be clear,
further work is needed to develop detailed formulas for various situations and calibrate
them experimentally.

Recently, it has further been recognized that the size effect also occurs in compression
failures of quasibrittle materials. Compressive fracture is a formidably complex problem
which has been already intensely studied. However, despite many useful results, the global
mechanics of compressive failure has not been sufficiently illuminated and the size effect
has not been determined.

The purpose of the present lecture is two-fold. First, the general scaling laws of the
mechanics of failure will be reviewed, considering the elementary scaling for theories such
as elasticity, plasticity and linear elastic fracture mechanics, and then the more com-
plicated scaling for quasibrittle materials. Second, the global mechanics of compression
fracture in quasibrittle columns will be analyzed in an approximate manner, which is
however believed the capture the principal phenomena. The fracture analysis of com-
pressive quasibrittle failures, and the corresponding size effect which will be presented,
should eventually be introduced into the design code provisions for reinforced concrete
columns and possibly also prestressed structures in which compressive failure is promoted
by prestress. The analysis outlined in the first part of this lecture will appear in detail in
a forthcoming journal article (Balant, 1993).



1 Basic Scaling Laws

1.1 Power Scaling for Structures Lacking Characteristic Length

The size effect is defined by comparing geometrically similar structures of different sizes.
We denote as Y the response quantity whose size dependence is to be determined-for
example, the nominal strength, the maximum deflection or the maximum strain. In this
paper, our interest is in comparing the nominil strength (or nominal stress at failure), 6
Y = aN, which is defined as

P.A P.1 (1
aN = C - (for 2D) or aN = cN-Ty (for 3 ,D,

in which A, = maximum (ultimate) load, b = structure thickness in the case of two-

dimensional similarity, D = characteristic dimension (or characteristic size), which can
be chosen arbitrarily (for instance, as the depth of beam, the span, the half span, the
notch depth, etc.), and CN = coefficient introduced for convenience if one desires aN to
correspond to some commonly used stress formulae.

Let us first consider those theories in which there is no characteristic length. This

means that the scaling ratio Y/Y of the corresponding responses Y and Y depends only
on the size ratio A = DID of two different sizes D and D but is independent of the
choice of the reference size D. Plasticity, elasticity with a strength limit, continuum
damage mechanics (without nonlocal concepts), and also linear e1a-stic fracture mechanics
(LEFM) belong to this class of theories, and so do many other theories in physics. As is
well known, the scaling law for all these theories is a power law. We will now show it by
adapting an argument used in fluid mechanics (Barenblatt, 1979, 1987). Let the scaling

law be f(A), that is

-=f(A) (2)

where f is an unknown function that we want to find. Considering another structure size
D6 = PD with the corresponding response k, we have

f = f(3)

Now, because there exists no characteristic size, the size D can alternatively be chosen as

the reference size. In that case Eq.(2) implies that

_- = f (4)

Substituting now the ratio of Eqs. (2) and (3) into Eq. (4), we obtain

f )(5)

This is a functional equation from which the function f(A) can be solved. To this end,
we differentiate Eq. (5) with respect to u and then set A = A;

fl~) -f'(A) (6)
A f(A)

__ _ _ _ _(_)



in which f' is the derivative of function f. The last equation is a differential equation for
the unknown function f, which can be easily solved by separation of variables. With the
notation f(1) = m = constant, the integral is In f(A) = m In A + C, and determining the
integration constant C from the condition C = In f(1) = 0 for A = 1, we have f(1) = 1.
So we finally conclude that function f must be a power function,

A=A (7)

The power scaling law we obtained must hold for every physical system in which
there is no characteristic dimension. This includes plasticity or elasticity with a strength
limit. Further this includes LEFM. This is so despite the fact that the tensile strength
ft, Young's elastic modulus E and fracture energy G! can be combined to give a length
quantity, 1o = EGI/ft (which has often been called the characteristic length, but is better
called the characteristic process zone size because the former term means something else
in the previously established terminology of nonlocal continuum theory). The reason that
the presence of 1o in LEFM does not destroy the validity of the power law scaling (as will
also be shown by another approach later) is that, in LEFM, the fracture process zone
is treated as a point, and that there is no change in failure mechanism associated with
10 (this is in contrast to nonlinear fracture mechanics, e.g., the crack band model or the
cohesive crack model).

Proving the converse, i.e., that there is no characteristic size if the scaling law is a
power law, is obvious and trivial.

Note that the Weibull-type statistical strength theory in which the spatial density of
the material failure probability is given by a power law with a zero threshold leads to a
power-type size effect. This implies that there is no characteristic length. It follows that
this theory is unrealistic for structures where a characteristic length is obviously provided
by the material inhomogeneities or the size of the fracture process zone (this conclusion
was reached in a different manner in Baiant and Xi, 1991).

1.2 Boundary Value Problem of Continuum Mechanics

Geometrically similar structures of different sizes are related by the affine transformation
(affinity), which is the transformation of change of scale:

i = Axz (8)

where zi are the Cartesian coordinates for the reference structure of characteristic di-
mension (size) D, and 2i are the coordinates for a geometrically similar scaled structure
(Fig. 1) and A = D/D where D is the characteristic dimension of the scaled structure.
The primes are used to label the quantities referring to the scaled structure. For the sake
of brevity, we will denote O/Oi, = 8,, 0/ = i. From the chain rule of differentiation,
8i = A, 8, =

For the reference structure of size D and the similar scaled structure of size D, the
field equations and the boundary conditions are
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Fig•re 1: (a-b) Geometrical scaling of structures and affinity, (c) size effect plot, and (d)
geometrically similar structures with very small cracks whose size is a material property.
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For D: For D:

jou,3  + fA=o 0,, + f.=0 (9)

ei = (Ouj + ou,)/2 Ii = (81ii, + bif)/2 (10)

aijnj = 9i on r, ai A = A, on r (11)

Ui = Ii on r2  ii, = U5  on T2 (12)
in which cij and eii are the stresses and strains in Cartesian coordinate z, (the strains are
assumed to be small), u, = displacements of material points, r, and r2 are the portions of
the boundary with prescribed surface tractions pi and with prescribed displacements Ui;
fi = prescribed volume forces; and n =hi = direction cosines of unit outward normals
on the stress boundary.

From equation (7) we already know that the scaling law must be a power function. p
Let us now assume that the displacements are related by the scaling law

aii = A"*+Iuj (13)

where m is an unknown exponent. Substituting this into the differential equations and
boundary conditions (9)-(12), we find eii = Am (8uju + O8ui)/2. Then according to (10) p
and assuming further that the stresses and strains obey the same scaling law, the following
transformation rules ensue:

ij= 60A, aij = sijAm , &N = ONA"' (14)

Pi= piA', A = fiA"\-', •i = uAm+l

These rules indicate how a solution for one size can be transformed to a solution for
another size. However, the value of m is indeterminate. To determine it, we cannot
ignore the constitutive law and the failure condition. Next we consider in this regard two
important special cases.

p

1.2.1 Elastic-plastic constitutive law

The constitutive relation and the condition of no failure (either the yield condition or the
condition of allowable stress) have the general form:

ffj = O"ffi) •sj,,ij) < a0(1)

in which J% are tensor-valued functions or functionals of a tensorial argument (satisfying
proper tensorial invariance restrictions), 0 is a nonlinear scalar function of tensorial ar-
guments, and 00 is the material yield limit or allowable stress limit. After transformation
of scale, (15) takes the form ai, = •'(j,,), ) < a0. Since at least function 0
(and possibly also function F) is nonlinear (and nonhomogenous), this is possible only
if aij = aij and 4,, = ekm, which means that m = 0. The transformation rules from
Eqs. (13) and (15) then become

S= Aui, Ii, = erij, ij = oij (16)

fi = pi, .i = I/A, f,= uA

't



Also &I = ON (17)

that is, the nominal stress at failure does not depend on the structure size. We say in this 0
cabe that there is no size effect. This is characteristic for all fa:Jure analyses according to
elasticity with allowable stress limit, plasticity and classial continuum damage mechanics
(as well as viscoelasticity and viscoplasticity, because time has no effect on this analysis).

1.2.2 Linear elastic fracture mechanics

a) J-integral
In this case, the constitutive relation and the condition of no failure can be written as

ii = DAiuknm, J < Gf (18)

in which Diikn is the fourth-order tensor of elastic constants, G! is the fracture energy

(considered as a material property), and J is the J-integral;

J= f 2ijij - ., nioluids) (19)

(e.g., Kanninen and Popelar, 1985; Knott, 1973). Using the transformation rules in (13)-
(15), we find that the J-integral transforms as

J= f [m(A' 1i)(A m ,-,i)Ady - A'onriiniA-1l(AI+1uj)Ad.]

\ A2 m+l If (ojdy - ajnio'uids) \2m+l- (20) 6

Since both j and J must satisfy the same inequality, that is, J < Gf and J < G/ in all
cases, it is obviously necessary and sufficient that 2m + 1 = 0, that is,

m = -1/2 (21)

Thus, according to (14) and (15), the transformation laws for linear elastic fracture me-
chanics are

ui= ive,, li= £,j/s/, aij = (22)

, /VrJ� f , \=3U/2

aN- aN (23)

where A - D/ID. So the nominal stress at failure depends on the structure size D, aN -
/VD or

1
log aN = constant - 1lo D. (24)

In the plot of log ON versus log D, the linear elastic fracture mechanics failures are rep-
resented by a straight line of slope - 1, while all stress- or strain-based failure criteria
correspond to a horizontal line (Fig. 2).

The foregoing argument can be generalized to nonlinear elastic behavior, to which the
J-integral is also applicable.
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b) Work of stresses during separation
For the case of LEFM, the same result can alternatively be obtained in a more elementary
manner. The energy release rate can be calculated by imagining a small crack advance of
length h to happen in the following manner: 1) A slit of length h is cut ahead of the crack
but is held closed. 2) The normal stresses a., acting across the slit are then gradually
reduced in proportion to (1 - r) where r is a parameter growing from 0 to 1. 3) At the
same time, because the body is linear elastic, opening displacements of the crack faces
grow in proportion to r until they reach the final opening displacements of a crack with
the tip advanced by h. The work of a'y on uY at both crack faces gives the energy release
per length h which must be consumed by the fracture process. Because fo(1 -r)dr = 1/2
and the stresses a., work on both crack faces, the work per unit crack advance, i.e., the
energy release rate, is

= lin h J ',YUYdz (25)

(e.g., Eq. 4.5.2 in Knott, 1973, or Eq. 12.1.7 in Baiant and Cedolin, 1991) where x is the
coordinate in the crack direction. Using the foregoing transformation rules, we find that
for the scaled structure the energy release rate is 0

C= lim i(m ) +lu )d
h-0 h ji

= jh oYuydx = \ 2-+Ig (26)

which must be the same as the energy release rate given by the preceding equation.
Consequently, A2m+l = 1 or m = -1/2.

1.3 Alternative derivation: dimensional analysis

In an alternative way which is shorter but more abstract, and thus to a novice less
convincing, the size effect can be determined by dimensional analysis. When the structure
is elastic-plastic, its failure is governed by the yield stress r0 , whose metric dimension is
N/M 2. The failure also depends on the nominal stress aN, whose metric dimension is also
N/M 2. Further, it depends on the characteristic structure size dimension D and other p
dimensions such as span L, notch length a and various other geometric characteristics all
of which have the metric dimension of m.

The number of nondimensional variables governing the problem can be determined
from Buckingham's II theorem of dimensional analysis (Buckingham 1914, 1915; see also
Bridgman, 1922; Porter, 1933; Giles, 1962; Streeter and Wylie, 1975; Barenblatt, 1979,
1987; Iyanaga and Kawada, 1980). This theorem states that the number of nondimension-
al variables governing any physical problem is equal to the total number of variables (in
these cases five or more) minus the number of parameters with independent dimensions
(in these cases two). Thus, it turns out that the failure condition must have the form

,0( aiN L a 0 27
,o =o (27)
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where 9 is a function. Since ro is a constant, and for geometrically similar structures
also LID,a/D,... are constants, it follows that the nominal stress at failure, ON, must
be proportional to r0 , and therefore a constant when the structure size D is varied.

In linear elastic fracture mechanics, the failure is determined by the value of the
critical stress intensity factor K1 1 , the metric dimension of which is Nm-3/ 2. The other
quantities determining failure are the same as before, including UN, D, L, a, etc. Again,
the number of nondimensional variables on which the failure can depend follows from
Buckingham's II theorem and it turns out that the failure condition must now have the
form

,\ Kj, L ....D ) =0 (28)

Since Ki, is a material constant, and since the ratios L/D,a/D,... are all constant for

geometrically similar structures, it follows that o'NV(D must also be constant. Hence,
aN - D-11 2 , which agrees with what we have already shown (e.g. Baant, 1983, 1984;

Carpinteri 1984, 1986).

1.4 Scaling Laws for Structures with Characteristic Dimension 0

1.4.1 Transitional Scaling for Nonlinear Fracture Mechanics or Quasibrittle

Behavior

In nonlinear fracture mechanics, the criterion of crack propagation is characterized by 0
both an energy quantity (the fracture energy G1 ) and a stress quantity (strength ft or
yield stress fs). At first one might think that the size effect would be a power law with a

constant exponent intermediate between 0 and -1/2. However, this is not true. Because
the ratio GC/fl has the dimension of length (in the metric system, it is N/m divided

by N/m 2 ), a characteristic length is present in the problem, and so the assumptions

underlying equation (7) are invalid. Hence, the scaling law cannot be a power law.
Previous studies (Baiant, 1983, 1984; Baiant, 1987; Batant and Pfeiffer, 1987; Baiant

and Kazemi, 1990; etc.) have shown that the scaling law represents a gradual transition

from the strength theory to LEFM. This transition has the shape of the curve plotted
in Fig. Ic, which was experimentally obtained for notched three-point-bend specimens

already by Walsh (1979). This curve approaches asymptotically the horizontal line for 0

the strength theory when the size is becoming very small, and the inclined straight line

for LEFM when the size is becoming very large. A general exact expression for this curve

cannot be obtained. However, under certain simplifying assumptions, on can derive the

following approximate size effect law (Baiant, 1983, 1984): aUV = CO(l + 0)- 1 / 2 with

0 = DIDo where 0 = relative size and Co, Do = positive constants (see the curve in Fig.

lc).
The simple size effect law proposed by Batant(1983, 1984), whose applicability range

is surprisingly broad, albeit not unlimited, has been extensively experimentally verified
and applied for quasi-brittle materials such as concrete, rocks, ice, tough ceramics and
composites, in which the fracture process zone has a non-negligible size and consists of

distributed microcracking. This law has been shown to describe well the typical brittle

failures of concrete structures, particularly the diagonal shear failure of beams, torsional
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failure of beams, punching shear failure of slabs, pullout of bars and anchors, failure of
bar splices, certain types of compressions failures, failure of short and slender columns,
and beam and ring failures of pipes. It has also been shown that this law can be used
for unambiguous definition of material fracture characteristics, especially the fracture
energy (or fracture toughness) and the effective length of the fracture process zone, and
for their determination from the peak loads measured on similar specimens of different
sizes (e.g.Baiant and Kazemi, 1990).

1.5 Weibull Theory for Structures with Critical Crack Size Independent
of Structure Size

There is a fundamental difference between the classical applications of fracture mechanics
to metallic structures and the modern applications to quasi-brittle structures such as
concrete structures:

9 In the former, the maximum load occurs (or failure must be assumed to occur) while
the crack size is still negligible compared to the structural dimensions (Fig. id) and
is determined by material characteristics such as the spacing of major defects, the
grain size, or the ratio of fracture energy to yield stress.

9 In the latter, there is large stable crack growth (with distributed damage) before the
maximum load is reached, and the maximum load occurs when the crack extends
over a significant portion of the cross section (in concrete structures it is typically

* 50% to 90%). I

Consider now geometrically similar metallic structures of different sizes, made of the
same material. The cracks at maximum load are, in each of them, roughly of the same
size, and they are so small that the disturbance of the stress field caused by the crack
is negligible and the energy release caused by the crack is much smaller than the strain
energy stored in the structure. In that case, the energy release rate Q can be approximately
determined from the stress a (maximum principal stress) that is calculated for the crack
location as if no crack existed. Then, considering for example a crack of length 2a in two
dimensions, the stress intensity factor (obtained from the energy release as Kt = v/')
is approximately calculated from the formula Kt = orV/a which is exact for a crack in a
homogeneously stressed infinite solid. The condition of no failure is written as K1 < K,
where K4 is the given fracture toughness of the material. Obviously, this condition of no
failure is equivalent to

o < A, with f. = Kc(Tra)- 11 2  (29)

This is the same as the strength criterion, with f,, regarded as the strength of the material.

In some other situations, the crack size at maximum load is not negligible but is
independent of the structure size. Then again the fracture mechanics failure criterion is
equivalent to the strength criterion, which means that the scaling law is such that there
is no size effect on the nominal strength.

In the situations just discussed, in which the critical crauK size is independent of the

structure size, there can be size effect on the nominal strength, but it is not deterministic.



Rather, it is caused by randomness of material strength, as described by Weibull-type
statistical theories (Weibull, 1939; Freudenthal, 1968; Bolotin, 1969; Elishakoff, 1983).

The Weibull law for the spatial density of material failure probability in general in-

volves a stress threshold below which the failure probability is zero. In practical applica-
tions this threshold is almost always taken as zero because the test data can be matched
by this law also almost equally well with very different threshold values. It is interesting
to note that, for a zero threshold, the size effect predicted by the Weibull theory is a
power law (e.g., Batant Xi and Reid, 1991). It follows that, according to (7), the Weibull 6
theory for a zero threshold implies that no characteristic structure dimension exists. But
this implies Weibull theory cannot apply to structures in w, ich the fracture process zone
size has a certain nonnegligible characteristic dimension. Indeed, the statistical size effect
is significant only when the structure fails while the crack is still very small, such that the
stress redistribution caused by the crack is globally insignificant and the energy release
caused by the crack is negligible compared to the total energy in the structure.

Randomness of the material strength is of course an inevitable property of materials
and its influence is never exactly zero. In quasi-brittle structures, however, the Weibull-
type statistical size effect is overshadowed by the size effect due to energy release and gets
completely suppressed as the size approaches infinity. Proposing a nonlocal adaptation 1
of Weibull theory in which the material failure probability depends on the strain average
over a certain characteristic neighborhood of the point rather than on the local stress,
Balant and Xi (1991) derived the following approximate formula:

ON = C0 (132n/m + /3)-/ 2, )3 = D/Do (30)

in which C0 , Do, m and n are positive constants; n is the number of dimensions (1, 2
or 3) and m is the Weibull modulus of the material. Normally the exponent 2n/m is
much less than 1. According to this formula, the classical Weibull-type statistical size
effect ov oc D2n/m, is approached asymptotically for sufficiently small structures (16 - 0).
But the available test results show this asymptotic behavior to apply, in theory, only to p
structure sizes that are less than the smallest practical size. In other words, the material
strength is random but causes no significant size effect, for any size range. For large
structures (03 --- oc), the last equation indicates that oNv cc D-1 /2, that is, the statistical
size effect asymptotically disappears. The reason, briefly, is that a significant contribution
to the Weibull-type probability integral comes only from the fracture process zone which 0
is large but for structures of different sizes has roughly the same size.

2 Theory of Size Effect in Quasibrittle Compressive Failure

Theoretically it is clear that a non-statistical size effect must also exist in quasibrittle 0
compression failures. The reasons are as follows:

"* Quasibrittle materials such as concrete, rock and most advanced composites are
not elasto- plastic in compression because the stress gradually decreases after the
peak and the load-deflection diagram exhibits post-peak gradual softening instead
of terminating with a long plastic plateau.

"* The failure is a fracture process, in which the energy release matters.
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A * The coarse microstructure of quasibrittle materials indicates that there must be a
characteristic dimension. This excludes the scaling according to a power law, and
in particular the case of zero exponent corresponding to the absence of size effect.

That quasibrittle compressive failures exhibit size effect has been confirmed experi-
mentally. For example, Batant and Kwon (1992, 1993) conducted tests of geometrically
similar tied reinforced columns made from microconcrete with reduced size aggregate
(maximum size 1/8 in.), and found a significant size effect. This size effect is contradicted 0
by the existing design codes, which all predict no size effect as they are based on elasticity
and plasticity. The columns in these tests were geometrically similar, and the reinforce-
ment was of course scaled, too. The cross sections were squares of sides 0.5 in., 1 in., and
2 in., and the slendernesses were 19, 36 and 53.

Compression fracture is a formidable problem, more complex than tensile fracture. 0
Many results have already been obtained (Baiant, 1967; Biot, 1965; Horii and Nemat-
Nasser, 1985, 1986; Kendall, 1978; Sammis and Ashby, 1986; Shetty et al., 1986; Batto and
Schulson, 1993; and others). However, most studies were actually solving the problem of
initiation of compression fracture from various types of defects, such as wedging inclusion
configurations or the spread of wing-tip cracks from an inclined microcrack, which govern p
the initial behavior long before the maximum load is approached. The maximum load is
determined by a global mechanism, which has not been adequately illuminated, although
it is clear that internal instability of the damaged material must play a dominant role
(Biot, 1985; Batant, 1987).

In the second part of this lecture, we will now concisely outline a new mathematical -
model characterized by (1) energy release analysis, and (2) instability with post-critical
buckling of microslabs of the material between adjacent splitting cracks. The detailed
analysis will be presented in Ba.ant and Xiang (1993).

2.1 Stocky Columns 0

Consider a column (a beam) shown in Fig. 2a, having length L, width D (characteristic
dimension) and unit thickness b = 1. One end cross section is fixed. The other is
subjected to axial displacement u and rotation 0 and is loaded by axial compressive force
P of eccentricity e. The initial normal stress in the cross sections before any fracturing is

(31)

where E = Young's elastic modulus, ar-d z = transverse coordinate measured from the
compressed face (Fig. 2a). We now assume that, a certain moment of loading, axial cracks
of spacing a and length h, forming a band as shown in Fig. 2a,b,c, suddenly appear and p
the slabs of the material between the axial cracks, behaving as beams of depth S, lose
stability and buckle. This can happen in any one of the three mechanisms shown in
Fig. 2a,b,c, and for all of them the mathematics turns out to be identical. If the length
of the cracks in the two inclined bands in Fig. 2c is denoted as h/2. The critical stress
for the microslab buckling shown in Fig. 2a,b,c is, in all cases, i

Ir2 Es 2

S- 3h (32)
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Figure 2: (a-c) Splitting cracks, buckling of microslabs and stress relief zone, (d-e)
stress-strain diagrams with an without buckling and areas representing strain energy
changes, (f) size effect deduced for compression failures
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The key idea is now the calculation of the change in stored strain energy caused by
buckling. On the side of the crack band, there is obviously a zone in which the initial stress
a0 is reduced. For the sake of simplified analysis we assume that the stress in the shaded
triangle areas of Fig. 2a,b,c is reduced all the way to a, and outside these areas the initial
stress does not change. The triangular areas are limited by the so-called "stress diffusion
lines" of slope k, whose magnitude is close to 1 but can be reliably determined only
by experiment or by accurate solution of the two-dimensional boundary value problem.
For the analysis of size effect, however, the only important fact is that k is a constant
if geometrically similar columns are considered. In these shaded triangular stress-relief
zones, the strain energy density before and after fracture is indicated by triangles 0120
and 0340 in Fig. 2d, and so the loss of strain energy density on a vertical line of coordinate
z is

aIfI, = 0 -•z (33)
2E 2E

The situation is more complicated in the crack band. The microslabs buckle, and
the energy associated with the postbuckling behavior must be taken into account, which
is a key idea proposed in this lecture. The strain energy density before buckling of the
rnicroslabs is given by the area 0120 in Fig. 2e. The analysis of postbuckling behavior
of columns (Balant and Cedolin, 1991, Sec. 1.9 and 5.9) indicates that the stress in the
axis of the microslab follows after the attainment of the critical load the straight line 35
which has a very small positive slope (precisely equal to o,/2). This slope is far smaller
than the slope E before buckling and can therefore be neglected. So the postbuckling

* behavior is approximately a horizontal plateau 35 in Fig. 2e, however, is not the same as
plastic behavior because unloading proceeds along the path 530. Because the microslabs
remain elastic during buckling, the stress-strain diagram 035 is fully reversible and the
energy under this diagram is the stored elastic strain energy. The triangular area 0340 in
Fig. 2e represents the axial strain energy density of the microslabs and the rectangular
area 35643 represents the bending energy density. The change in strain energy density in
the microslabs is the difference of areas 0120 and 03560 in Fig. 2e, that is,

AlIC- !&LX2( o' .(zeAX) -! (34)

2E 102E ]

where e, is the axial strain of the microslabs in the crack band after buckling (it is
important that it is generally not equal to 04 or 02 in Fig. 2e).

Integration of (33) and (34) yields the total loss of potential energy at constant u and
or:

aft !LL jG(~)U-(Z))k (35)

+ I'"/ I c(Z - 2E]} hdxt 2E 2E hd

where a = horizontal length of the crack band (Fig. 2a,b,c). This energy must be equal
to the energy consumed by the formation of the surfaces of all the axial splitting cracks.
Thus, the energy balance criterion of fracture mechanics may be written as: 0[eanj1 a h

[-[ -Fa (G h 3)=aGI (36)



where GI is the fracture energy of the axial splitting cracks, assumed to be a material
property.

The axial strain in the crack band can be determined from the compatibility condition.
Because the end cross sections are assumed to be fixed during buckling (i.e., u, e =
constant), the stress in the blank areas of the column in Fig. 2a,b,c remains constant,
and so the line segment GJ in Fig. 2a at any * does not change length. Expressing the
change of length of this segment on the basis of ao., c, and 0o and setting this change to 0
zero, one obtains the following compatibility condition

Oo(W [h + 2k(a - x)] - 2k(a -z) 0--W (37)
Eh h E

The length h of the axial cracks, representing the width of the crack band in Fig. 2a,b
or double the crack band width in Fig. 2c, is an important parameter that must be
determined. The critical stress according to (32) would decrease with increasing h, and so
the largest energy release would be obtained for h -- oo. Since the largest energy release is
what must happen (because of thermodynamic considerations; Batant and Cedolin, 1991,
chapters 10 and 12) the prediction would be oa, = 0, which is however unreasonable. In
a recent study of the role of axial splitting cracks in borehole breakout (Baiant, Lin, and
Lippmann, 1993), the microslab buckling was assumed to be opposed by shear stresses on P

the microcracks taken as proportional to the slip on the microcracks. That assumption
leads to a more complicated formula for a•, than before, and it is noteworthy that the
minimum o, is now obtained for a certain finite value of h. Furthermore, in reinforced
concrete columns the crack length is no doubt strongly influenced by the elastic stiffness
and spacing of the ties or the pitch of the spiral. 10

In this preliminary exposition, we prefer to keep only the essential ingredients of the
analysis necessary to illustrate the idea, and so we will simply assume that h is a given
constant (the problem will explored deeper in Bazant and Xiang, 1993).

We must now substitute Eqs. (31) - (34) and (36) into (36) and integrate. Although
it is no problem to calculate the integral exactly, the resulting expression is lengthy and
in view of the approximate nature of the entire analysis we prefer to evaluate the integral
approximately, taking the value of the integrand at the centroid of the triangles, x = a/3
and multiplying it by length L. This yields

4ka ( OrO2 r74 Es' (38)Eh 2E -18h
4 J

+ah (h+ 0) 2E'[L - 18h4

Substituting this into the energy criterion of crack band propagation, we get
8k (a02 3 V4 E235 2o: 72E2 32 ruo (, 2kczD\ 3

aD .) +a~ 1h !E + (3h)
T 2h 18hs / +3h /

47rk=s _____Es' 211.sS (4ko 4kir's 2 '\
41r 2kD. 2  + 7- 8 + aDE 2 r + 9h}2) = EG!

It is also helpful to relate stress 00 at z = a/3 to the nominal stress ON defined as the
maximum stress in the beam just before fracturing;

N=--kNO kN= + 6e) [I--e 1 2a (40)
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Now, kN is a constant when geometrically similar columns with similar cracks are con-

sidered, and so is a. So Eq. (40) can be written as

CloiD + C2ao + C3voD + C4 vo + CsD + Cs = 0 (41)

in which ct = alD and C.,...Cs are constants if geometrically similar columns with
geometrically similar crack bands are considered. From this equation we have

D - C2&0 + C 4oo + CS _ Co(Oq - aNO)(P, - aN) (42)
D -(Clfo0 + C3 o + Cs) (a- - ON)(ON - 4,)

Co = constant; oa, o, are the larger and smaller roots of the quadratic polynomial in
the denominator of (42), and aq, ,o are the larger and smaller roots of the quadratic
polynomial in the numerator of (42). For physical reasons, we expect the roots to be real
and such that oa, > Op > ar and aq > op.

Eq. (42) yields the size effect plot sketched in Fig. 2f. This plot represents a tran-
sition from the plastic limit oa approached for D -. 0 to the residual nominal stress
o,. approached for D -- oo. So the conclusion from our analysis is that compression
failure caused by lateral propagation of bands of axial splitting cracks and buckling of the
microslabs between the cracks ought to exhibit a size effect.

It is interesting to note that the foregoing result is similar to the generalization of
the size effect law proposed in Balant (1987) for the compression failure in the Brazilian
split-tensile test, which reads

'rN = (Op - Oa) (i+ + ar (43)

where Do = constant (transitional size). The plot of this equation has a same shape as
Fig. 2f. Inverting this equation, one has

D -o a + 2uau, + ap(2o, - op)
'V - 2aa N + a,2 (4

It is interesting to note the analogy to (42), although both equations do not coincide.

2.2 Slenderness Effect

In the experiments of Batant and Kwon (1993) it was observed that the size effect in
columns becomes more pronounced with increasing slenderness. The foregoing solution
of size effect, given by (42), corresponds to small slenderness LIDo. The size effect that
this equation describes may be denoted as oN = f(D) where f is the function implicitly
defined by (42).

If the column is slender, one must take into account the release of potential energy
from the deflected column. An easy way to calculate it is to imagine the end cross sections
of the column segment that undergo relative displacement u and relative rotation 0 and
are distance L apart (Fig. 2) to be right next to the stress relief zone and assume that
L < 1. To determine the energy release from the column, we assume that during the
advance of crack length, da, the values of u and 9 remain constant. This means that
the applied load, P, the load-point displacement at the end of the column, u., and the



midspan deflection u all change. In this case, the change of stresses and deformations
due to column buckling does not interfere with the triangular energy release zones we
considered earlier (Fig. 2). We could of course calculate the energy release at fixed
load-point displacement or at a fixed load, but in that case the strains and stresses in
the unshaded area in Fig. 2 would not remain constant, but would change, which would
invalidate our preceding calculation. This is a basic idea of the present approach.

Consider the column to be hinged and take the deflection curve approximately as
z :t w sin(ry/1) where w = midheight deflection, y= longitudinal coordinate. The change

in the axial force and moment at midlength can be calculated from the change of the
stress distribution due to the extension of the band of splitting cracks by da:

dP = [ao,. - oo(a)]da, dM = (a, - ao(a)] P - a) da (45)

where ar, is the critical stress in the microslabs. Load P is assumed to have a con-
stant eccentricity e at the ends of column, and so M = P(e + w) or w = (MIP) - e.

Differentiating, we have

dw= [dM - (e + w)dP] (46)

The axial shortening due to deflections w is u. = fo(ZI)2dy/2 = 7r2 w2/4t, and so the
work of the axial load during da is

dW = Pduo = P -2wdw (47)

The change of stored bending energy during da is dU = d feo EI(z")2dy/2 = d( r4 EIw2 /4
that is

dU = ir4 EIwdw/213  (48)

where I = moment of inertia of the cross section of column.
The change of potential energy due to axial elastic strains is dila = -dl =

-d(P 2t/2EA) where A = cross section area of column and HI. is the complementary
energy due to axial deformations. Now the change of potential energy during da due to
column deformation is di = dU - dW + d[., and the additional energy release due to
column deformation, which needs to be added to that calculated before in Eq. (36), is
given by

d -- da 1- -- (P. - P) wdw - PdP (49)

In this equation P_ = w2EI/12 = first critical load of hinged column.
It may be now be noted that if the column is axially very stiff and P = Pa,, there is

no energy release due to column deformation, which might have been expected. When
PC. > P, there is a positive energy release because dtw and PdP are- negative during crack
band extension. The additional energy release must obviously promote fracture, and thus
it must intensify the size effect. It remains to study the foregoing results numerically,
which will be done in Badant and Xiang (1993).

p



2.3 Alternative Simpler Approach to Slenderness

The influence of column slenderness on the size effect can also be approximately described
by a simpler alternative calculation based on matching the midheight maximum stress
from column buckling with the stress associated with crack band growth. The effect of
slenderness is to cause lateral deflection, which is in the mid-span of the column approx-
imately equal to pe where p is the magnification factor p = [1 - (P/P,.)]-; P1.1 is
the first critical load of the column, whose value decreases with increasing slenderness
DIL. Writing now the same definition of the nominal stress as for small slenderness and
imposing the condition that the stress given by the size effect law be the maximum stress
in the deflected slender column, we have:

aN= 1+ , =f(D) (50) 0

The size effect plot of ON versus D is the solution of these two equations, in which P is a
parameter to be eliminated. Obviously, the size effect will be more pronounced for higher
slenderness.

2.4 Borehole Break-out

A size effect has also been deduced for borehole breakout in rock under certain simplifying
hypotheses. In an infinite elastic space that is initially under uniform triaxial stress with
minimum principal stress ON, a cylindrical borehole of diameter D is drilled. This causes a
zone of parallel splitting cracks to form at the sides of the borehole. For various borehole
diameters D, these zones are considered to be similar and have elliptical shapes. The
growth of the cracking zone causes a release of the stored energy which must be equal
to the energy consumed by the growth of the cracks. Using this condition and assuming
the splitting cracks to follow LEFM, Batant, Lin and Lippmann (1991) showed that
oN c D-211. The reason that the exponent in not -1/2 is twofold: (1) There is not one
but many cracks, and (2) the spacing s of the cracks is not proportional to D but to D415 ,
which results from the analysis of buckling of the intact rock slabs between the parallel
cracks.

3 Conclusions 0

The scaling law for nominal stress at failure is a power law if and only if there is no
characteristic dimension of the structure. This applies to elasticity, plasticity, continuum
damage mechanics and linear elastic fracture mechanics. In quasibrittle or nonlinear
fracture, the scaling law is a transition between asymptotes representing plasticity and I
linear elastic fracture mechanics, provided that the fractures at the maximum load are
geometrically similar. When a structure fails at the crack initiation from a flaw whose
size is a material property, independent of the structure size, there is no deterministic
size effect, but a size effect is obtained as a consequence of the randomness of strength, as
described by Weibull-type statistical theory. The size effect in compressive failure, which
has been brought to light by recent experiments, can be theoretically explained by lateral
propagation of a band of axial splitting cracks and buckling of microslabs of the material

0
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between the adjacent cracks. Analysis of the fracture energy release in this mechanism
must take into account the postcritical deflections of the microslabs. This theory leads
to a transitional size effect law terminating with a finite residual stress. An increase of
column slenderness intensifies the size effect.
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CRACKS INTERACTING WITH PARTICLES OR FIBERS
IN COMPOSITE MATERIALS

By Gilles Pijaudler-Cabot.' Associate Member. ASCE.
and Zden& P. Bakant.1 Fellow. ASCE

AUSTRACT: Micron•chanics analysis of damage in heterogeneous media and
composites cannot ignore the interactions aitong cracks as well as between cracks
and inclusions or voids. lrevitous investigators can Ito this conclusion upon finding
that states of distributed idiffuse) cracking (damage) cannot he mathematically rep-
resented merely as crack systems in a homogeneous medium. even though stable
states with distributed damage have been experimentally observed in heterogeneous
materials such as concrete. This paper presents a miethod for modeling interactions
between a crack and many inclusions. Based on the Duhamel-Neuman analogy.
the effect of the inclusions is equivalent to unbalanced forces acting on the contour
of each inclusion in an infinite homogeneous solid. The problem is solved by su-
perposition. it is decomposed into several standard problems of elasticity for which
well-known solutions are available. The problem is finally reduced to a system of
linear algebraic equations similar to those obtained by Kachanov for a system of
interacting cracks without inclusions. The calculated estimates of the stress inten-
sity factors differ from some known exact solutions by less than 10% provided the
cracks or the inclusions are not very close to each other. Approximately. the prob-
lem can be treated as crack propagation in an equivalent homogeneous macroscopic
continuum for which the apparent fracture toughness increases or decreases as a
function of the crack length. Such variations arc calculated for staggered inclu-
sions. They arc analogous to R-curves in nonlinear fracture mechanics. They de-
pend on the volume fraction of the inclusions. their spatial distribution and the
difference between the elastic properties of the inclusions and the matrix. Large
variations (of the order of l(XI%) are found depending on the location of the crack
and its propagation direction with respect to the inclusions.

IM'ROOUCTMO

Most particulate or fibcr-rcinforccd composi!cs do not fail by propagation
of a single microcrack. Typically, these materials are capable of sustaining
significant loads while multiple microcracks propagate. In concrete loaded
in uniaxial tension or compression. acoustic emission analyses (Lcgendre
1984; Maji ct al. 1990) and X-ray microscopic observations (Darwin and
Dewey 1989) show that distributed microcracks and damage localization cx-
ist in the material prior to failure. In these brittle heterogeneous composites.
cracks are often initiated at the interface between the matrix and the aggre-
gate pieces, and they propagate into the matrix eventually. Distributed crack-
ing is also observed in fiber composites, the behavior of which in the planes
normal to the fibers is similar to a two-dimensional particulate composite
(Highsmith and Reifsnider 1982).

The key problem in developing a theory explaining such observations is
how to take into account the effect of the heterogeneities. Pijaudicr-Cabot
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117. No. 7. July. 1991. (,ASCE. ISSN 0733-9399/91/(XX)7-161 I/S$.00 + $.15 per
page. Paper No. 26002.
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and Dvorak (1990) recently proposed an approximation method for esti-
mating the variation of the stress intensity factor and the inherent toughening
effect at the tip of a crack that touches the interface between two elastic 0
materials. In the case of concrete-like materials. which are the main moti-
vation for this paper, most studies considered that the interactions among
cracks or between aggrcgatc pieces and cracks could reasonably be ne-
glected. except in some special cases.

Zaitsev (1985) developed a rather comprehensive model in which the in-
clusion-crack interaction is neglected and each crack may interact only with
its closest neighbor. However. the postpeak softening a response of concrete
specimens could not be obtained with this method. More recently, Huang
and Li (1989) and Hu et al. (1986) used similar ideas and proposed models
in which the toughening (i.e.. crack arrest) effect of the inclusions was in-
corporated. Although the mechanical interaction effects were still lacking, P
crack deflection mechanisms were represented statistically (Faber et al. 1983;
Evans and Faber 1983). The effect of crack-inclusion interaction on dynamic
crack propagation was studied by Sih and Chen (1980).

The effect of crack interaction has recently been considered in the studies
of micromechanics of damage in concrete or ceramics (Horii et al. 1989;
Ortiz 1988; Balant et al. 1989; Kazemi and Pijaudier-Cabot 1989), and sev-
eral approximation schemcs for estimating crack-interaction effects have been
proposed [see e.g., Kachanov (1987); Horii and Nemat-Nasser (1985)1. In
particular, the importance of crack interaction at the onset of damage lo-
calization has been proven to be a fundamental aspect that justifies partial
nonlocality of the constitutive relations at the macroscopic level. i.e.. for P
the homogenized damaged medium (Pijaudicr-Cabot and Berthaud 1990).

Some investigations have led to a striking conclusion: according to ther-
modynamics and stability analyses, most regular crack systems such as par-
allel equidistant cracks, periodic arrays of cracks and some colinear crack
systems cannot be reached by a stable path under usual load or displacement
control conditions (Balant 1989; Balant and Cedolin 1991: Bal.ant 1987b;
Balant and Tabbara 1989). Such models incorrectly predict that only a single
crack ought to propagate. Thus, stable states of diffuse damage consisting
of a system of tensile microcracks cannot exist according to these mathe-
matical models in the first place, although they have been observed experi-
mentally. Furthermore, the predicted shape of the softening postpeak load-
displacement curve does not agree with experience and snap-back instability
is predicted to occur earlier than seen in tests (Barant 1987a). These dis-
crepancies suggest that the mechanical effect of inhomogeneities cannot be
ignored in modeling the evolution of damage and its progressive localization
in concrete-like materials. This provided the motivation for the present study.

Solutions for some cases of the interaction between a crack and an inclu-
sion in an elastic matrix exist [see e.g., Kunin and Gommerstadt (1985);
Erodogan ct al. (1974)]. They are based on a system of singular integral
equations, which, however, appears to be intractable in the cases where sev-
eral inclusions interact with the crack. Mura's equivalent inclusion method
(Furuhashi et al. 1981) poses similar problems as it requires computation of I
integrals that may not converge absolutely when the inclusions are period-
ically distributed in an infinite medium.

In this paper [which is based on a conference paper by Pijaudier-Cabot ct
al. (1990)1, we present an approximation scheme for solving the problem of
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interaction between cracks and inclusions. The method can be viewed as an
extension of Kachanov's superposition scheme (1987) for an interacting crack
system without inclusions. Similar extensions could be made using the method
of pseudotractions (Honi and Nemat-Nasscr 1985).

The paper is organized as follows. First, the approximation method is
developed. considering the simple case of one crack interacting with an in-
clusion, and vcrificd by comparisons with solutions available in the litcra-
turc. Second. an extension of this technique to the situation in which one
crack interacts with sevcral periodically distributed inclusions is carried out.
Finally, the effect of the inclusions on crack propagation is interpreted in
terms of an apparent fracture toughness of the homogcnizcd composite. The
ultimate objective is to develop a realistic model for the fracture process
zone in composites.

The study is restricted to cases in which the bond between the matrix and R:
the inclusion is perfect. Partial debonding and interfacial cracking will not
be considered. This simplification is realistic especially for composites such
as high-strength concrete or light-weight concrete.

INTERACTION BETWEEN CRACK AND INCLUSION

Consider an infinite two-dimensional solid subjected to remote uniform
boundary tractions producing a uniform stress field ar.. The solid is made
of a linear elastic material of stiffness matrix D,,. It contains a crack of length
2c and an elastic circular inclusion (inhomogcncity) of radius R and stiffness
matrix D., IFig. l(a)I. The crack center is located at distance b from the •
center of the inclusion. The crack orientation is arbitrary. For such a solid.
we seek an estimate of the stress intensity factors at the crack tips denoted
as points A and B. For the sake of simplicity, we restrict attention to the
case of circular inclusions, although the method we are going to develop is
general and can, in principle, be extended to inclusions of arbitrary (smooth)
shapes.

The stress and displacement fields for this problem can be solved by su-
perposing the solutions of two simpler problems IFig. l(a)I:

"* Subproblem I: The solution for the infinite solid without any crack con-
taining the given inclusion and loaded by the remote tractions correspond- I
ing to r,..

"* Subproblem iH: The solution for the infinite cracked solid loaded by dis-
tributed normal and tangential forces p(x) on the crack faces i', that cancel
the stresses on the crack line obtained in 1.

By superposition. the equilibrium condition for the crack surface may be

written as

a r n(x)+ p(x)=O on r . ...................................... (I)

in which a denotes the stress field solution of subproblem I calculated at
the imaginary crack surface r, and n(x) is the outward normal to I', at a
point with cartesian coordinates x. Ideally, (I) should be satisfied exactly at
every point of r, and superposition would then yield an exact result. For
the sake of simplicity, we assume that (I) is satisfied only approximately,
in the average sense, that is
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(a) Subproblem I Subproblem I!
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FIG. 1. Crack Interacting with Incluslon: (a) Superpoattlon Schem; (b) Duhamel-
Neuman AnaMgy; (c) SuperpoeMton In Subproblem 1

(a o n(x) + p(x)) = 0 ............................................. (2)
in which the brackets ( ) denote the averaging over I',. This simplification
is inspired by Kachanov's (1987) approximation scheme for interacting crack
systems in homogeneous solids without inclusions, which has been showed
to be satisfactory in most situations. In Kachanov's scheme as well as here. S
the averaging is justified by the St. Venant principle: the errors represent a
self-equilibratcd stress field that must be decaying very rapidly with the dis-
tance from the crack and is. therefore, negligible for a sufficient separation
of the crack and inclusion. Moreover. even if the crack tip is close, its K,
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value depends on the encrgy release rate from the entire structure rather than
just the stresses in the vicinity.

Subproblem I
For thc sake of simplicity, attention is restricted to plane elasticity. The

perturbation stress due to the presence of one inclusion is givcn by thc well-
known Eshclby's solution Isee e.g.. Mura tl' K7)i. Sincc we intend to deal
with many inclusions as well as interacting cracks. it appears preferable to
dcvise a simpler. iterative, solution. From the strcss field (r. which is a
solution of subprohlem I. we can calculate the unbalanced strcss field Atir
insidc the inclusion of contour I,,:

. v = (D . - D ,.,):e ...... . ...................................... (3a )

with

f = D - ': a .................................................... (3b )

while in the matrix outside 1',,. the stresses A& vanish. The unbalanced stresses
Ao can be equilibrated by applying tractions Aor. n, on interface I'_,. Since
these tractions do not exist in reality. thc oppositc unbalanced interface trac-
tions must act on the interface I',, in the composite S

p. = - A o'.n,, on I .. . ........................................... (4)

in which n,, is the unit outward normal of the boundary curve I'., of the
inclusion, and e and (Y arc the strain and stress tcnsor insidc the inclusion.
The stress ficld in subproblem I may he written as

S= ( *7 outside !I , ...... ...................................... (Sa )

-= ( * ý- I'o, inside ' ... ... ................................... (Sb )

in which (Yr* = an equilirium stress field when stiffness D,, of the inclusion
is changed to D,, i.e., when the properties of the infinite solid arc uniform. S
Eqs. (3)-(5) can also be obtained from the Duhamcl-Ncuman analogy Isce
e.g., Lin (1968); Muhkclishvili (1953)1, which is widely used in thcrmovis-
coclasticity and creep and is illustrated in Fig. I(b). This analogy transforms
a problem of elasticity of a heterogeneous solid into an equivalent problem
of a homogeneous solid that can be decomposed into a superposition of stan-
dard problems for which analytical solutions (e.g.. complex potentials) exist.
Obviously. the unbalanced stress field Ao is the unknown in the equivalent
problem. Its determination calls for an iterative procedure.

1. The starting solution is a* -= (7. evcrywhere. It gives thc first estimate of
p. according to (4). The curvc 1',, is subdivided into segments of length d.I and
the tractions p, arc rcplaccd by concentratcd forces p.(s) ds acting at the center
points of coordinate s of the segments. Then one may usc the well-known two-
dimensional solution for a concentrated force p applied at point s of an infinite
homogeneous elastic space denoted as fip(s)1; sec e.g.. Timoshcnko and Goodier
(1970) or Mukhclishvili (1953). The normal and shear components of the stress
tcnsor f with respect to the rotated cartcsian axes (r'. v') at a point of cartcsian
coordinate (xr.v) are

f: ll -I v - 2(l vi sinm (0)l cos (0)(41nr) 1( ,,flu,'dl
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= pl-3 - v -2(1 +- 0) sin'(0)l cos (0)14-irr)

fX -pt - v L + 2( 1 -+ ) cos'(0)I sin (0)(4rrr) ...................... (6)

in which r distance between points (.y) and s; axis -v' coincides with the
direction of p; and 0 = the angular deviation of the line connecting points . 'v)
and s from the direction of p Superposition of these solutions yields the stress

r,, caused by tractions p,,s) in an infinite homogeneous elastic space:

c . f Ipf (s) Ids ......................... .I ............... )...... 7

A new stress field a* inside 1'. is obtained as:

0U s = . .. + . 7 . .................................................. (8)

2. The new unbalanced pressures p. are then recalculated from (3)-(4). Eq.
(7) yields the new field &,,.

3. Step 2 is iterated until the changc pa'' - p.' of the unbalanced interface
tractions from itcration becomes small enough. This is dctermined on thc basis
of the norm Ilpo(s)iI = jI. Ip.(s)Ids where jp.(s)j is the length of vector p.(s). The
convergence criterion is that •

1 . (0 1I'" - I -< e ................................................ (9)11p.(s)ll'

in which e = a given small tolerance: e = 0.01 was used in computations and
usually less than five iterations were needed. The convergence is very fast. and 0
for small enough e this iterative procedure can approximate the exact solution
(for uniform p) as closely as desired. It can be shown that the iterates of P,, form
a geometric progression.

Subproblem 11
Consider now that there is a crack in the matrix near the inhomogeneity

and that the crack faces 1, arc loaded by a uniform pressure distribution
(p(x)). The boundary at infinity is stress free. Again, we can apply the Du-
hamcl-Neuman analogy in order to compute the interaction stress field due
to the presence of the inclusion, and subsequently the distribution of internal
pressure on the crack faces. For this. we use the superposition scheme de-
picted in Fig. l(c).

First. the body without the inclusion is loaded by an unknown average
pressure (p,(x)). This causes interface tractions -Ao, "n,, on the imagined
contour of the inclusion as given by (4).

Next, we consider the uncrackcd heterogeneous body loaded by these un-
balanced pressures on ra. From subproblem I we can get the solution stress
field and the pressure distribution on the imagined contour of the crack
pi•(X):

pW(x) = I -fr. Af r.n.(s)Idsln ............................... (10)

Superposition yields

(p) = p(x) + p"(x) on I...................................... (11)
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Note that this superpoxsition method. with the average pressure approxi-
mation on the crack surface. is similar to Kachanov's (1987) approximate
solution for interacting cracks except that instead of two cracks we deal with
one crack and one inclusion. In ( II), the right-hand side terms arc not con-
stant. If we restrict the present analysis to configurations in which the in-
tcractions arc small, the superposition equation may be approximatcd by:

(p) = (p,.(x)) ý- (,:'x) on I, .. . ................. (12)

Under these two assumptions. the superposition equation 1(0I ) has a single
vector unknown (p.(x)):

(p) = (1 + A ,,).(p,.(x )) .......................................... (13)

with

A. -(pr(x)= J -1,fl n(s)ids fdx .................... (14)

in which I is the 2 x 2 identity matrix, and A,, is a full 2 x 2 matrix which
couples the mode I crack opening and the mode II crack opening. It can be
regarded as a transmission factor that represents the average influence of the
inclusion on the crack. Note at this point that if o', is not computed from
the constant pressure distribution (pAx)). the unknown in the problem would
need to be solved iteratively (as in subproblem 1) as A,, depends on p,(x).

Substitution of (13) into (2) yields:

(pt(x)) = -(1 + A ') .................................... (15)

The stress distribution on I, is also computed using the right-hand side of
(I I) and. for example. the stress intensity factors for mode I crack opening
arc:

K,(-• f) v p,.(x)ndx ............................ (16)

As an example, Fig. 2 shows the results for the mode I stress intensity
factors for a crack in an epoxy matrix located near a metallic inclusion. The
remote loading is uniaxial tension parallel to the crack faces and plane strain
is assumed. For simplicity, we analyze cases where (I) The crack is radial
to the inclusion IFig. 2(a)j; and (2) the crack is tangential to the inclusion
IFig. 2(b)]. In both situations the average tangential pressure distribution is
zero and (15) has a scalar unknown. The radius of thc inclusion is such that
R/c = 2 and the material properties are E,,/E, = 23. v,, = 0.3. v,. = 0.35
where E,,. E, and v,,* v,, are the Young's moduli and Poisson's ratios of the
inclusion and matrix, respectively. In the figures. K, is normalized with re-
spect to the stress intensity factor Kl,, for a crack in an infinite homogeneous
solid. which is Kl,, = (a. V'rc. The approximation is compared to the an-
alytical solution of Erdogan ct al. (1974). For a radial crack I Fig. 2(a) 1. the
approximation turns out to be very accurate. The error is only a few percent
except if the crack and the inclusion arc very close. When the crack is tan-
gential to an inclusion [Fig. 2(b)I the present averaged superposition equa-
tions become rather inaccurate if the crack is close to the inclusion (a/c <.
4). The reason is that the stress fields in subproblems I and If have a large
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IbI

variation over thc imagined crack length.
Fig. 3 shows the rcsults for a crack in an epoxy matrix located near a

void. The same two configurations as in Fig. 2 are considered and the ma-
terial stiffness of epoxy is equal to that in Fig. 2. Again, the quality of the
approximation is quite acceptable unless crack and void become ver, ,:lose.
Compared to the results in Fig. 2. the variation of stress intensity fa.ctors is
the opposite. When the crack tip A approaches the void IFig. 3(a)l, the stress
intensity factor K, increases and tends to infinity. but when the tiap ap-
proaches a stiffer inclusion. K, decreases. "the same remark holds when the
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FIG. 3. Stress Intensity Factor for Crack in Epoxy near Void: (a) Radial Crack;
(b) Tangential Crack

crack is tangential to thc void or inclusion, although the strcss intcnsity fac-
tots remain finite.

INTERACTON ETWEEN CRACK AND SEVERAL INCLUSIONS

We look now at an elastic solid that contains N elastic inclusions and one
crack. The inclusions arm arbitrarily distributed in thc matrix. The inclusion
contours are dcnoted as 1r, (i = i .... N) and for the sakc ot simplicity all
the inclusions arc assumed to be made of thc samc material of stiffness D,,.
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St* t

Subproblem I Subproblem II
FiG. 4. Crck Intoscitg with Periodic Aray of Incuslions: SuerpositIon Scheme

The superposition method is now applied as follows (see Fig. 4).
First in subproblem I, we solve again for the stress ficld in the composite

without the crack loaded by tractions corresponding to 4rY. Thcn. in sub-
problem IL, the compositc is free from the remote boundary tractions and it
is loaded by an unknown internal prcssure p(x) on the crack contour 1',. Thc
superposition equation 1(2)1 is again applied in the average sense.

Subproblem I I
When the uncrackcd composite contains several inclusions, the intcrac-

tions are an important factor in the cvaluation of the local stress and %train
fields. As we will see. the Duhamel-Neuman analogy is also easy to im-
plement.
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Sincc the problem remains elastic, the effect of each inclusion can be
superposed as a first approximation ncglccting the interactions. The follow-
ing iterative procedure, similar to that described before. yiclds the effect of
the interactions on thc local stress field in the matrix.

I. The initial stress field is
V

•v = @ . • o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t 17 )

in which the a, = the stress due to the presence of inclusion i alone in the matrix
(Eshelby's solution). The unbalanced pressures p, on the contour I', of each in-
clusion i arc calculated from a* according to (4)-(5). The stress a, due to p, is
then calculated as if each inclusion i werc alone in the infinite solid. i.e.

o , = fflp,&s)l ds ............................................... (18)

A new total stress field is computed from (17) using superposition.
2. From a (5). the unbalanced pressures p, on each contour f', arc recalculated

using (4). Then again the stress ar, due to p, is calculated from ( 18) as if the
inclusions were alone, and by superposing oY,. the new total stress field obtained
from (17).

3. Step 2 is iterated until the unbalanced tractions p• (i = I1 ... N) resulting
from ar in iteration number I differ negligibly from those at iteration number I
- I. This is determined according to the convergence criterion in (9).

The foregoing algorithm converges quitc rapidly. Normally. convergence
is reached in less than five iterations provided the inclusions arc not too stiff
compared to the matrix (ElEm, -c 7) (but for perfectly rigid inclusions the
present iterative method does not work). When the inclusions arc pcriodi-
cally distributed, the unbalanced pressures p, should be identical on each
contour 1', (i = I ..... N). and in that case the convergence criterion does
not need to be applied for each inclusion.

Fig. 5 gives an example of the calculatcd stress distribution of stress in a
two-dimensional composite with periodically spaced circular inclusions of
radius R. The remote loading is a unit uniaxial tension in the '%-direction.
The inclusion centers are located on a squarc grid of spacing b, = hb. = 3R.
The material properties arc E,,/E, < 3 and v,, = v. = 0.2. Plane stress is
assumed and the central inclusion is assumed to interact only with its 48
closest neighbors. The stresses (Y,, and (r,, arc computed along the axis of
symmetry of two adjacent inclusions, and obviously (T, = 0. Convergence
was achieved in 3 iterations, with tolerance e = 0.01. The results arc graph-
ically undistingpishablc from those obtained by the equivalent inclusion method
(Furuhashi c ai !981).

Subproblem II
The crack is loaded by a uniform internal pressure p(x on its contour I',. -I

From superposition.

PIX) = p(x) + E p•,,(x) on i" . ... .............................. (19)
A12

18,21S



tyy t

0.5 
CX

0~ A

Sx/bx

FIG. 5. Local Stress Fiel In Composite with Periodically Distributed Inclusions

In this equation. which is similar to (11). p,. = thc distribution of the itra
pressure applied on I',. and P', (k = 1....N) = the interaction ters due
to the presence of the inclusions. p'..is computed at the imagined location
of thc crack as if thc compositc were uncracked. Again. thcrc arc two types
of contributing terms in p t

The first type of' contribution ariscs from the effect of the loading p, on
the inclusion k which is assumed to be alone in the matrix with the crack
(same as in thc previous section of the paper). This term denoted as kpk iS
computed according to (10):

p' = I rf Av h n(s) Ids1n ..................................... (20)

in which u, = the stress field due to the crack loaded by px). calculated
for the inlinite solid without inclusions; 1&, = the unbalanced stresses com-
puted on the imagined contour 1', of the inclusion k; and n, = the outwardn
unit normal vector of l'k.

The second type of contribution is the interaction between the inclusion
j(j A kp and inclusion k, and its influene on the crack faces. Each inclusion
in the composite is subjected to the stress nak. The value otp, can be com-
puted in the same manner as in subproblom I but the strcss fields ua , Is
substituted to the remote field nr,. From (17) and (8i) we obtain:

p,(X) {fr i-Ao• k(n s)lds} n . ... ............................. (21)
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in which .,1, = the stress field due to the unbalanced pressure p, acting on

contour 1', o• normal vector n,:

, = f - .1 , .. ........... .... ........ ............... (22 )fl

Superposition yields:

S p (x) ............................................. . (23 )

and after substitution into (It)).

N 1V

P MX) = p,.(x) + 7 p (x) ...................................... (24)
k I I I

We assume again that (24) needs to he satisfied only in the average sense:

(0 1X) + , Wj) .............................. ... (25)

in which AA' the transmission factor due to inclusion k considered to he
alone with the crack: and A, - the transmission factor due to interaction
between inclusion k and inclusion j.

If a, is the stress field due to the crack alone subjected to the uniform
internal pressurc (pmx). (25) is linear in (p,(x)) and has a single vector
unknown. According to this assumption. the transmission factors do not de-
pend on the shape of the distribution of p,(x). This simplifying assumption
is acccptable if the distances between any two inclusions arc not too small.
as we will see next in comparisons with the results from the literature.

Fig. 6 shows an example of the calculated variation of the mode I stress
intensity factor K, at the tip of a crack located between two circular voids
as a function of the crack length and of the spacing between the voids. The
remote loading is uniaxial tension perpendicular to the crack. The center of
the crack is equidistant from the centers of the adjacent voids. The results
arc compared with the known analytical solution given in Tada et al. (1985).

If the distance between the voids is large compared to their radius, the
approximation is seen to be adequate (error less than 10%1). However, when
the crack length increases, the effect of the voids becomes localized in a
small segment of the crack surface 1', and the agreement with the analytical
solution is less than satisfactory. This discrepancy is mainly due it) the two
,ucccssivc averagings of the distributions of internal pressures on the crack
faces laveraging of p(x) first and of p,.(x) secondl. Another limitation is that
the approximation loses its accuracy when the voids get too close to each
other.

The example in Fig. 7 shows the variation of" K, for a crack propagating
in a composite containing a square array of' identical circular inclusions (h,
= b,). The center of the crack is at equal distances from two ncighhor in-
clusions along the v-axis and the crack propagates in the x-direction due to
tensile stress (Y,, (see Fig. 5). Plane stress is considered, with v,, - i,.,, ().2
and I/lI., 3. The spacings between the inclusions are equal. h, k ,.
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Two volumc fractions V, of inclusions arc chosen: V, = 0. 195: b,/R = 4.
and V, = 0.35: b,/R = 3. Denoting K,,, = stress intcnsity factor if there wcre
no inclusions, we see that the effect of the inclusions is to cause thc ratio
KI/K,,, to decrease with the crack length c. except when the spacing b, is
too small. This means that the apparent stress intensity factor increases dur-
ing crack propagation. So the composite behaves as if the crack followed
an R-curve. Furthermore. the stress intensity factor increases with the vol-
umne fraction of inclusions. According to this result. cracks in a densely packed
composite must occur earlier than in a loosely packed composite. Finally.
we can see that even for a low-volume fraction of inclusions, the amplifi-
cation of the stress intensity factor compared to K,,, is quite important.

The present approximate method could no doubt be combined with Ka-
chanov's method (1987) and thus be generalized for a system of cracks in
a composite. However, programming the computation of the various trans-
mission coefficients seems to be too tedious.

APPARENT FRACTURE TOUGHNESS OF CoMPosITE

As we have observed from Fig. 7, inclusions may cause the composite to
behave as a homogeneous solid with a rising R-curve. The knowledge of
such an apparent R-curvc would permit a much simpler calculation of frac-
ture in composites. In such an approach, the interaction between cracks is
uncoupled from the interaction between the cracks and the inclusions. Sim-
ilar assumptions have been made by Mori ct al. (1988) and Gao and Rice
(1988). who used a perturbation method to analyze fiber-reinforced com- 0
positcs in which the values of the elastic moduli of the matrix and the in-
clusions are sufficiently close. More precisely let K,., be the fracture tough-
ness of the matrix. According to Griffith's criterion, crack propagation occurs
when K, = K,. For a crack length c in a macrohomogcncous composite
loaded with tensile stress r... we may write K, - KI,, (•c) where K,,, = (T.
\/'"c. and where F(c) is a certain amplification function that is computed 0
from the crack-inclusions interaction. The estimation of K, yields the ap-
parent fracture toughness K, of the composite

Kra2K,= • ................................................ (26)
F(c) 0

In most studies [see e.g., Zaitsev (1985) and Zaitscv ct al. (1986)1. F(c)
was assumed to remain constant or to change only when the crack touches
an inclusion (Huang and Li 1989). Fig. 8 presents the approximate variation
of fracture toughness for a crack propagating symmetrically in a composite
made of regular staggered circular inclusions embedded in an elastic matrix. I
The radii of the inclusions are equal and denoted as R (R = I). The volume
fraction of inhomogcneities is Vf = 0.7. Plane stress is assumed with E,,/E.,
= 3 and v,, = v,, = 0.2. The remote boundary traction is uniaxial tension
perpendicular to the crack faces (mode I crack opening).

Three configurations have been analyzed [Fig. 8(a)I. In configuration I.
the crack propagates toward the centers of two inclusions. In configuration
3. the center of the crack is at equal distances from two rows of inclusions.
Configuration 2 is intermediate between configurations I and 3.

Fig. 8(b) shows the variation of the apparent fracture toughness with the

1625 0



heh be

h.1 s,) h-12

. *I,_Th1J hT Y/2

Configur:Iiim I Configuraliuon 2 (Cofiguration 3

2.0 (b) .--Conriguration I

1.8 1/

01.6

1.4 Configuration 2

1.2

1.0 Configuration 3 *1

0.8 Regular staggered inclusions

0.0 0.2 0.4 0.6 0.8 1.0
2c / bx Il

FIG. 8. Apparent Fracture Toughness of Composite with Staggered Inclusions:
(a) Configurations Analyzed; (b) Fracture Toughness versus Crack Length

crack length according to (26). We scc that these variations may he radically
different depending on the configurations analyzed. Configurations I and 3
give the highest and lowest values of the apparent mode I fracture toughness.
respectively. The more drastic variation is obtained when the crack propa-
gates toward an inclusion, this corresponds to the maximum possible tough-
ening.

These variations ot apparent fracturc toughness have a great influence on
stability of interactive crack systems. As we sec. the mechanical effect of
the inclusions cannot be neglected in crack propagation studies as the frac-
ture toughness of the equivalent medium may vary by as much as l(X)c/%. It
should be stressed that these curves are valid only if the crack does not touch
the inclusions. Otherwise. the singular stress field at the tips of the crack
would need to be modified.

To exemplify the influence of the spatial distribution of the inclusions at
a constant volume fraction. Fig. 9 shows the variation of apparent toughness
for a regular (b, = h. 3R) staggered distribution of inclusions and a non-
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regular staggered distribution of inclusions (b, = 4R. b, = 2.25R). The in-
clusion spacings are such that the volume fraction is the same. V, = 0.7.
Configuration I is chosen with the same matenal properties as in Fig. 8. S
Again. there is a large difference between the two cases. The nonregular
staggered distnbution (dashed curve) provides the lowest apparent fracture
toughness. This suggests that inclusions that are radial to the crack have the
largest influence since h, has been increased. The toughening effect, which
is important for the regular distribution, is delayed as the tips of the crack
are more distant from the inclusions.

The effect of the variation of the ratio E;,/E,. ol the elastic moduli of the
inclusion and the matrix is shown in Fig. 10. The apparent fracture tough-
ness of the composite has been computed for the crack length 2c = R, with
v. = v. = 0.2. The composite contains a regular staggered distribution of
inclusions with Vf = 0.7. The solid line corresponds to configuration I and
the dashed line corresponds to configuration 3 Isee Fig. 8(a)l. We obtain
the upper and lower bounds of variation of toughness for a crack opened
under mode I as a function of the ratio E,,/E.,. For configuration I this curve
is certainly not linear. It should be pointed out that for large values of E,,/
E,, convergence could not be reached in subproblem I (E./E,., > 7). The
range of variation of E,/E, showed in Fig. 10 corresponds to the usual val-
ucs for concrete.

From the present analysis one might get the impression that the length of
crack extension needed to reach the asymptotic value of an R-curve is about
as long as the inclusion spacing. No doubt this can be true only for periodic
inclusion arrays. For random arrays, this length could he much longer. •

CONCLUSIONS

I. The interaction between a crack and several inclusions can be analyzed by
superposing known solutions of standard problems of elasticity. The method uses
first Duhamel-Neuman analogy in order to transform the problem into a problem
of elasticity of a homogeneous body in which the inclusions are replaced by the
matrix and the boundary conditions are modified. A superposition scheme is
proposed, similar to Kachanov's method for interacting cracks. The solution of
the problem of interaction of one crack with many inclusions is reduced to the
solution of a linear algebraic equation with transmission factors characterizing 0
the interactions of the crack with each inclusion and of any two inclusions. Com-
parisons with exact results from the literature show that in most cases the method
is sufficiently accurate for practical purposes (with an error better than 10%)
when the inclusions and the crack are not too close to each other.

2. The variation of the apparent fracture toughness of the equivalent homo- 0
geneous medium (representing the inverse of the calculated variation of the mode
I stress intensity factor at the tip of a crack propagating in the composite) is
analogous to the R-curve in nonlinear fracture mechanics. Calculations show that
the apparent fracture toughness depends on the volume fraction of the inclusions.
on their spatial distribution, and finally on the elastic properties of the constit-
uents of the composite. The largest (mode I) toughness is obtained when the 0
crack propagates toward an inclusion and the lowest toughness corresponds to a
crack propagating between two inclusions. The difference between these two
cases can be of the order of 100%.

3. Finally. the results show that. for a given composite and for a fixed crack
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configuration. the mechanical effect of the interaction between the crack and the
inclusions is not negligible. This effect is important for explaining stability of
simultancous propagation of many interacting cracks in a heterogeneous me-
dium. as well as for dctcrmining the conditions under which stable states of
diffuse damage can exist.
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FRACTURE OF ROCK: EFFECT OF LOADING RATE

ZDENEK P. BAZANT. SHANG-PING BA! and RAVINDRA GETTU

Caer for Advanced Cement-Based Materials, Northwestern University. Evanston. IL 60206, U.S.A.

Aheisec--Fracture parameters of limestone at loading rates rangng over four orders of magnitude in the
static regime are determined using the sie effect method. Three sizes of three-point bend notched
specimens we e tested under crack-mouth opening displacement control. The fracture toughness and
nominal strength decream slightly with a decrease in rate, but the fracture process zone length and the
brittleness of failure are practically unaffected. The effect of material creep on the fracture of limestone
is negligibl in the time range studied here. However. the methodology developed for characterizing rate
effects in static fracture can be easily applied to other brittle-heterogeneous materials. The decrease of
fracture toughness as a function of the crack propagation velocity is described with a power law. A
formula for the sme- and rate-dependence of the nonmnal strength is also presented.

INTRODUCTION

BOND RUPTURE is a rate process governed by Maxwell distribution of molecular thermal energies
and characterized by activation energy. Therefore, fracture in all materials is rate-sensitive. This
has been experimentally demonstrated for rock in the dynamic range, but not in the static range.
However, knowledge of this rate effect is very important for may practical applications in mining,
geotechnical engineering and geology. The present paper reports new experimental results on the
static fracture of limestone at loading rates ranging over four orders of magnitude. The
corresponding times to failure range from about 2 sec to almost I day.

EXPERLMENTAL DETAILS

All specimens were cut from the same block of Indiana (Bedford) limestone. Three sizes of
three-point bend (single-edge-ngotched) fracture specimens (Fig. 1) were tested. The depths, d, of
the beams were 25, 51 and 102 mm (1, 2 and 4 in.), and the thickness, b, of each was 13 mm (0.5 in.).
The specimens were cut such that the bending plane of the rock was normal to the load. Notches
of 1.3 mnm (0.05 in.) width were cut with a steel saw blade. Aluminum bearing plates of length equal
to half the beam depth were epoxied at the ends to provide support. The fracture tests were
conducted under constant crack-mouth opening displacement (CMOD) rates in a 89 kN (20 kip)
closed-loop controlled machine with a load cell operating in the 890 N (200 lb) range. The CMOD
was monitored with a transducer (LVDT of 0.127 mm range) mounted across the notch. Four series
of tests were performed; each series consisted of six specimens, two in each size (see Table I). The
CMOD rates were chosen so that all specimens in a series reached their peak load in about the
same time, t.. The average t. values were 2.3, 213, 21,420 and 82.500 sec for the different series.
The typical load-CMOD curves for each size are shown in Fig. 2. From the initial slopes of these
curves, the initial elastic modulus 4 of the rock was calculated, for each test, using linear elastic
fracture mechanics (LEFM) formulas (I]; see Table I.

IDENTIFICATION OF FRACTURE PARAMETERS

The size effect method (2] is used to determine the material fracture parameters from the test
data. The method has previously been verified for the fracture of limestone [3], as well as other
rocks and concrete (4, 5]. Recently, it has also been used in a study of the effect of loading rate
on the fracture of concrete [6]. The method is based on the size effect law (7], which is:

sf.V/0d+"0) d
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P

T

d , l!-gAs
Fig. I. Fracture specimen geometry.

where a,- P/lbd - maximum nominal stresses of geometrically similar fracture specimens,
P, - maximum load, d - characteristic dimension (chosen here as the beam depth), b , specimen
thickness (constant, for two-dimensional similarity), Bf, and do = empirical parameters, and
P - brittleness number. When P is very small (e.g. 4 0. I), a, is almost independent of size,
as in plastic limit analysis. When P is large (e.g. 0 I 10), the size-dependence follows LEFM
(i.e. •,, l//d). In the transition zone, nonlinear fracture mechanics needs to be applied.

For determining the parameters from arm data, eq. (I) can be transformed to Y - AX + C,
where X - d and Y - !/oI. Then, BfA = I/11C and d. = C/A (4]. By linear regression analysis of
the data for the four series of tests, the parameters and coefficients of variation of errors, wlix, have
been computed and are listed in Table 2. The data and the fits [eq. (I)] are shown in Fig. 3. It can
be seen that the size effect law represents the trend reasonably well, at all the loading rates. It is
clear that the data cannot be represented by either LEFM (a straight line with a slope of - 1/2)
or strength criteria (horizontal line aN - Bf,).

Using the values of Bf. and do, fracture parameters can be calculated as follows [4, 5, 7]:

dog(•o) K2,K
K1 , - Bf,/(deg(xo)), cf1 - g'(o)' f. E, (2)

Table I. Test data
Dimensionst CMOD rate Peak load Time to peak E£t

Series (mm x mm x -m) (10-'rmm/sec) (N) () (GPa)
457 x 102 x 13 15,900 445 2.1 40

15,900 472 2.2 32
Fast 229 x 51 x 13 10,600 281 2.0 33

10,600 291 2.4 24
114 x 25 x 13 5770 178 2.4 35

5770 165 2.2 35
457 x 102 x 13 159 436 176 33

141 414 194 30
Usal1 229 x 31 x 13 106 269 237 30

106 271 210 30
114 x 25 x 13 57.7 153 "248 29

63.5 165 215 30
457 x 102 x 13 1.42 394 23,175 .30

1.42 383 16,875 32
Slow 229 x 51 x 13 0.978 245 26,000 28

0.978 240 20.475 25
114 x 25 x 13 0.706 147 15,750 32

0.508 153 26,250 34
457 x 102 x 13 0.353 385 81,900 27

0.318 "387 79.000 34
Very slow 229 x 51 x 13 0.236 262 87,800 32

0.236 265 82,350 27
114 x 25 x 13 0.160 140 72.000 26

0.160 136 92,000 25
tLenoth x depth x thickness.
:nitial modulis from Ioad-CMOD compliance.

P
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where K1, fracture toughness, cf - effective length of the fracture process zone, and G. - fracture
energy. Function g(a) is the non-dimensionalized energy release rate defined by the LEFM relation
G - P2g(a)/E'bd, where G - energy release rate of the specimen, P - load, a - a/d - relative
crack length, g'(az) = dg(a)/da, a - crack length, a- = ao/d, ao - notch length of traction-free crack
length, E'= E for plane stress, E'= E/(I - v2) for plane strain, E = Young's modulus, and
v = Poisson's ratio. Function g(a) can be obtained from handbooks (e.g. [Il) or from LEFM
analysis.

Fracture parameters are defined here for the limiting case of an infinitely large specimen at
failure. Then, an infinite-size extrapolation of eq. (1) provides material parameters [eq. (2)] that
are practically size- and shape-independent [5]. Using the values g(ao) = 62.84 and g'(a,) - 347.7
(from [ID, and assuming plane stress conditions, the fracture parameters for the four series can
be computed; see Table 2, in which the average values of K,, and cf as well as their coefficients of
variation are listed. The E-value for each series is taken as the average initial modulus E4, and
is used in eq. (2) for computing G, (see Table 2).

VARIATION OF FRACTURE PARAMETERS

The test results show that as the time to peak load, t,, increases, the fracture toughness K,,
decreases. Since the fracture energy G, is proportional to K2, its decrease with slower loading rates
is even stronger. The same trends have also been observed in similar materials, such as hardened
cement paste [81, concrete [61, and ceramics at high temperatures (9].

To describe the influence of loading rate, we follow several other investigators by adopting
a power function of crack velocity v:

K.• K.(;, (3)
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Table 2. Fractur permuters

_ _ _ _ _ Cjr

Ave t, Of. do Av Avg. Avg. A, G
Seres (sac) (MN) (nau) W," (MPa,/WW) a, (mM) w (GPa) (N/W)

Fag 23 0.693 36.2 0.07 33.1 0.13 6.5 0.19 33.5 32.7
Usual 213 0.645 36.3 0.07 30.8 0.12 6.6 0.19 30.3 31.3
Slow 21,400 0.614 31.9 0.04 27.5 0.06 5.8 0.12 30.2 25.0
Very slow 2,I500 0.589 36.5 0.11 23.2 0.19 6.6 0.23 28.5 27.9

w - coeficint o( variation.

where K0 is the fracture toughness corresponding to a reference velocity, ve, chosen here as
v- - 0.01 umm/sec. Since the effective (LEFM) crack tip is roughly at a distance cf from the notch
tip at the peak load, we use the approximation

v - c1/t,. (4)

Then, by fittin the test results with eq. (3) (see Fig. 4), we obtain n -0.0173 and
/0- 30.0 MPa/mnu. Note that, alternatively, beam deflection or crack opening rates have
been used instead of v in other studies.

In similar tests of concrete (6], it was found that, with an increase in time to failure, the group
of data for the three sizes of specimens shifts to the right, i.e. toward the LEFM asymptote, when
plotted as in Fig. 3. This implies that, for higher t,, the process zone length cr decreases and the
brittleness of failure, characterized by P [eq. (1)], increases.

Rather interestingly, no such trend is observed from the present results of limestone. For all
t,, the data remain within the same part of the size effect curve. This is reflected by the fact that
c1 is practically constant (cf- 6 nun; Table 2), implying that the brittleness of fracture in limestone
is rate-independent within the time range studied here. This difference in the behavior (for the
present load durations) from concrete may be explained by the lack of significant creep [10].
Concrete exhibits marked viscoelastic creep in the bulk of the test specimen, as well as high
nonlinear creep in and near the fracture process zone.

(a) t, a 2.3 sec (b) t, a 213 sec

I..., 9$ = 0693 MPG *i. f .4 ~

Of. 0S . O f .4 P

loo p lag it
'Ilk

S(c) u , 21400 ,.c (d) =• 8, 250 s,

of. 0.614 MPG Of. 0.589 MPa

-S4 I ~ i - •e • L

log/I 0log p

Fig. 3. Size effect curves at different times to peak load.
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Fig. 4. Variation of fracture toughne= with crack velocity. Fig. 5. Influence of speimen us and time to failure on
nominal strength.

EFFECT OF RATE ON STRENGTH AND YOUNG'S MODULUS

Several investigators have demonstrated that the strength of rock generally increases with an
increase in the loading rate (e.g. (11, 121). This is also observed here from Table I. When the loading
rate slows by four orders of magnitude, the maximum nominal stress decreases by more than 16%.
This phenomenon, which is similar to the change in K1c, has also been observed in other
materials [131. It may be attributed to the statistical nature of the failure of molecular bonds
(particularly the activation energy theory and the Maxwell distribution of thermal energies).

The strength of a quasi-brittle heterogeneous material is generally difficult to measure
objectively because of its dependence on specimen size and shape, and because failure does not
occur simultaneously at all points but is progressive. However, strength (or failure stress) is
correlated to the fracture toughness since failure occurs by unstable crack propagation; higher

* toughness implies higher resistance against failure.
Equations (I) and (2) can be combined to give the size effect on the nominal strength

(maximum nominal stress) in terms of the material fracture parameters [51:

K,, 
(5)%. =1(g'(a0)cf+ g(a t')"

Substituting for ý,, from eq. (3), and cf from eq. (4), one obtains a relation for the dependence
of the nominal strength on the failure time:

UN " V/(g'(0o)cj + g;(,)d) (\.o,". (6)

Since cf is not systematically affected by the loading rate, the average value of 6.4 mm is considered.
Equation (6) may then be plotted, along with the test data, for the different sizes tested (Fig. 5).
The agreement is acceptable.

The test results also indicate that the average initial elastic modulus decreases slightly with an
increase in *e time to peak load (Table 2). Such an effect has been observed for several rocks in
the dynamic range [14].

CONCLUSIONS

(I) For times to peak load ranging from 2 to 80,000 sec, the measured nominal strengths of fracture
specimens of limestone agree with the size effect law.

(2) The fracture toughness and failure stress decrease with increasing failure time. However, the
fracture process zone size and the brittleness of failure appear to be unaffected by the loading
rate.

(3) Since there is insignificant creep outside the process zone of limestone in the time range studied.
the effective process zone size does not change as the loading rate is varied.

Ip
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Rate Effects and Load Relaxation in Static Fracture of Corwrete

by Zdendk P. Ba2ant and Ravindra Gettu

Reports an experimental study of the fracture of concrete at various (Mindess and Shah') have been carried out under very
crack mouth opening displcement (CMOD) rates with time to peak high (dynamic) rates of loading, in which the maxi-
loads ranging from about I sec to 3 days (over fee orders of magna-
tude). Tests were conducted on three-point bend specimens of three mum load is reached under 1 s. Since the creep effect
sizes in the ratio 1:2:4. Quesi-elkstic fracture analysi, based on the in this range is weak, a comprehensive understanding of
effective nodulus from creep theory. s used to evaluate the results rate effects can be obtained without accounting for

Saccording to the si effect merthod. The fracture toughness is found creep. However, for slower rates, the contribution of
* to decrease in agreement with the trend known for the dynamic range, creep becomes significant. Fracture, with rates that

Theeffective length of the fracture process zone is found to decrease correspond to reaching maximum load within any-
with increasing rate, which implies increasing brittkness and a shft whresbetweeanhhourmand lyar is at
toward linear elastic fracture mechanics behavior for slow loading. where between an hour and several years, is of great
Load relaxation at constant CMOD in the prepeak and post-peak interest for predicting the long-term cracking and fail-
stages of fracture tt was also investigated. The response tend to a ure of many types of concrete structures. For example,

* straight line in the logarithm of elapsed time, and the post-peak re- as is now widely accepted, the failure of dams should S
akxon a nary twice as strong as the inear viscoelastic relaxation be analyzed according to fracture mechanics, but cer-
of unnotched specimens. The difference between these two relaxa-
tions must be caused by time-dependent processes in the fracture tan types of fracture in dams develop gradually over a
zone. T results reveal that in concrete there is a strong interaction period of many years. Without any test data, one can-
between fracture and creep, which might cause the oad-carrying ca- not but speculate about the effective fracture proper-
pacity of structures with cracks to decrease signtiicantly with load ties to be used under such slow rates.
duration. However, extrapolations to loads beyond several days of This paper presents the results of fracture tests of
duration would be spectulative, concrete at various loading rates in the static range,

with the time to peak load ranging from I s to 2.5 days,
Kevw e bems S). e s e (f a, Ct-~P woss and the results of complementary tests of load relaxa-
Isede (guis): , ,, .tion in fracture specimens. (A preliminary report was

made earlier at two conferences."') The size effect
In all materials, even those that do not exhibit signif- method, combined with the assumption of a quasi-elas-

icant creep, fracture is rate-sensitive. That is, the effec- tic effective modulus representation of concrete creep,
tive fracture properties depend on the crack growth is used to determine the fracture energy, fracture
rate, which is determined by the loading rate. This is toughness, effective length of the process zone, and ef-
due to the fact that the rupture of interatomic or inter- fective crack-tip opening displacement at various load-
molecular bonds is a thermally activated process. The ing rates.
probability that the thermal vibration energy of an
atom or molecule (depending on the load) would ex- REVIEW OF RATE PROCESSES IN CONCRETE
ceed the activation energy barrier of the bond increases FRACTURE
with the number of oscillations. It is (according to the The significance of rate effects may be illustrated by

* Maxwell distribution of thermal energies) equal to zero comparing the results of two tests on identical three-
for an infinitely short time interval. In a material such
as concrete, the rate sensitivity is expected to be partic-
ularly marked due to creep of the material in the frac-
ture process zone, as well as in the entire structure.
Studies by Shah and Chandra,' Wittmann and Zaitsev, 1  AC matra ournA v. n. No. S. Septemaeb-october 92.
Liu et aL., and others have suggested that fracture is Re d June 23, 1991, and reviewed wnder InMtite publication policies.Copyriht ) 1992, Amerima concrete Inslgieu. Al rights reserved. including

ettset~auslaew shimsi bandfo the copyrAisgh13At prpr-affected by creep. Yet a detailed investigation of this th e from the copyright prop'etors. Pertinent • be iublishm! in. the, July-Aupust 1993 ACt Me-
effect has not been conducted. Substantial studies t,,ibowb l if received by AV1. I. M3.
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Fig. 2 - Rate effects on (a) Ioad-CMOD response and
Fig. 1I Three-point bend fracture specimen (b) load-deflection response

point bend (3PB) fracture specimens (see Fig. 1: b =38 CMOD-controlled tests are more relevant for studying

mmu, d = 76 mm, f, = 37 MPa, age = 150 days), at fracture properties than deflection-controlled tests.
very different crack mouth opening displacement It has been suggested that the cause for the increase
(CMOD) rates. The peak load of one specimen was in concrete strength under fast loading is the change in
reached in 1.2 s, and that of the other in about 20,000 crack path with rate. At very high (dynamic) loading
s (5.6 hr). The load versus CMOD and load-versus- rates, it has been observed (e.g., from compressive im-
load-line displacement curves are shown in Fig. 2(a) pact tests of Hughes and Watson') that cracks tend to
and (b). The peak load of the faster test is more than be less tortuous, and often pass through the aggregates
25 percent higher than that of the slower test. A similar instead of following the aggregate-mortar interfaces.
increase in the failure stress or "strength" has been ob- Since aggregates, in normal concrete, are stronger than
served previously in the static range by several investi- both the mortar and the interfaces, a crack passing
gators.' A similar trend exists under dynamic or impact through the aggregates will encounter a higher resis-
loading." tance than one following the interfaces. To investigate

Comparison of the post-peak response is also very whether this change in mechanism occurs in the static
interesting. While the load-CMOD plots IFig. 2(a)] for regime, the fractured surfaces of two 3PB specimensp
both specimens are quite similar, the load-displacement (see Fig. 1: b = 38 mm, d = 76 mm, age = 45 days)
plots (Fig. 2(b)I differ significantly. For the faster test, -one with time to peak load 1, - 0.5 s (and peak load
the load-displacement curve descends steeply, whereas" 4000 N), and the other with 1, - 30,000 s (and peak
in the slower test the drop is gradual and closer to duc- load = 2340 N) - were studied. it can be seen, from
tile behavior. This difference can be attributed to creep Fig. 3, that a few more aggregates were fractured in the
in the bulk of the specimen, since the load-line dis- faster case than in the slower, but no significant change
placement reflects the cumulative response of the entire in the fracture mechanism is apparent.
specimen, whereas CMOD is affected primarily by the The straightening of the crack path could also have
deformations of the crack and the fracture process an opposite effect - strength decrease due to the
zone. it is therefore important that the effect of creep higher stress intensity of planar cracks. Crack bridging
outside the process zone be separated from the rate and deflection by the aggregates increase the overall
process producing fracture. It also appears that fracture resistance. To check for difference in tortuos-
ACt Matertals Journal I Sepember-October 1992 457



" Table 1 - Fractur test data
Specrmem C.MOD Twne to Ap at PeakP V &"1. rue, ""I, t. o""tn. lowd.

s Series mm mm/s sec days N

ro Fast 38 1.1 x 101 0.9 28 2225
. I 8.4 x 10=' 2.2 23 1300#,ease Vo CD J;G n ohm sIeOM i It f- 36.6 MPa 1.I X I0, 1.5 28 11890

OP_ _.3 peren 23 39
P 1.3 percent 76 1.4 x 10 1.3 28 3625

184: 1.4 x 101 2.2 23 3960
1.4 x 10- 1.3 28 3025

b 152 2.1 x 101 1.3 28 6180
2.1 x 10, 1.1 23 5940S01 2.1 x 101 1.1 23 5425B O(1.9 Kd Usual 38 1.8 x 10 ' 595 21 18251.8 x 10' 595 28 1730 '

f;= 36.5 MPa 2.4 x 10 570 28 1645

_ Pr a ,,• = 6.!percent 76 5.3 x 0' 460 28 3070
3.6 x 10' 520 23 '2800

F4.3 x 10' 505 23 2760

30. - 152 7.1 x 10 ' 495 28 5025
7.1 x 10' 360 28 4225

ity, the fractured areas of the specimens mentioned Slow 38 7.1 x 10 410350 40 02315

7.1 x 10 17.100 38 1935
previously were approximately determined. After com-f-f- 37.2 MPa 7.1 x 1O' 13,5W0 39 2180

plete fracture, the cracked surfaces were covered with -= 5.5 percent 76 1.0 x 10-' 10.625 46 3580

2.4-mm (0.094-in.) wide tape, and the crack area was 9.4 x 10-' 17,550 42 3515
calculated from the length of the tape used. Although 1.1 X 10-" 11.900 30 3180

this method is not very accurate, it seems to suffice for 152 1.4 x tO'1 15.350 32 42701.4 x 10-6 14,00 38 4180

the present purpose. The crack area for the faster frac- 1.7 x 10-6 14,600 31 5295
ture was 2900 mm2 (4.5 in.z) and for the slower one, Very slow 38 3.8 x 10-' 266.500 120 2135
3000 mm2 (4.7 in.J). (The crack-plane areas were 2420 f 3976 7.4 x 10- 25,500 108 3180
mm2 (3.75 in.) for both.) This difference is insignifi- w 7 64. 4 pt 10- 255,00 1O9 130" = 4.4 pecn 152 i.3 x iO-' 236.000 90 4530

cant. Therefore, it seems that the same mechanisms 2--ay 23.o resoh of 76 x 1$s-m, cyindus.
dominate fracture in this range. (A similar observation , ef-•wien of t o of,

was made from tests of certain ceramics by Suresh et I Ms - 145..04 ps; I N - 0.2241 1b.

al."; they showed that fracture initiation in alumina
was predominantly intergranular for both dynamic and
static rates.)

Several micromechanical processes could give rise to Even at dynamic strain rates, it is not clear whether
rate effects, as, for example, the presence of moisture a slower rate causes more or less brittleness. Assuming
at the crack tip. As is well known, wet surfaces require the behavior to be analogous to that of a plastic mate-
less energy to form than dry surfaces, i.e., the fracture rial with coalescing voids, Reinhardt" proposed that
energy decreases in the presence of moisture. Water when the crack velocity is comparable in magnitude to
corrosion and disjoining pressure mechanisms that the wave speed near the crack tip, the fracture process
weaken the bonds at the fracture front may also be in- zone becomes larger than usual. To a certain extent,
volved.' 2 Such effects could explain the lowering of this hypothesis is supported by tests. Impact tests show p
fracture energy and strength in rock" and concrete." more distributed cracking and more fragmentation at
The detrimental effect of moisture is more significant at higher strain rates."'. These results further imply that
slower rates and teds to increase the crack velocity. It faster fracture is more ductile, since it dissipates more
has even been suggested that the water in concrete is the energy in a larger zone. " On the other hand, since the
primary source of rate effects."' nonlinearity of the prepeak load-deformation relation-

Creep dominates the response of cracked as well as ship decreases with an increase in loading rate, several
uncracked concrete under slow and sustained loading, investigators have argued that fracture becomes more
It may considerably decrease the strength and the ef- brittle.2 That argument applies only when the nonli-
fective modulus as loading rate becomes slower. The nearity is primarily due to the fracture process, and the
effects of creep on fracture, however, may be compli- effects of time-dependent phenomena outside the frac-
cated.'z One effect may be a decrease in fracture reds- ture zone are negligible. It is also possible that differ-
tance, and another effect may be relaxation at the crack ent trends could exist due to a change in fracture mech-
tip, which removes part of the stress concentration. anisms, for example, fracture through or around ag-
However, the second effect would also reduce the ex- gregates and inertia effects. Reversals suggesting such
tent of microcrack initiation ahead of a propagating explanations have been documented for failure strain"
crack.""' Since the microcracked zone causes crack and fracture parameters.n The present study is limited
blunting or toughening, a smaller zone implies more to static rates, and, therefore, will not attempt to an-
brittle fracture. swer these questions for fracture in the dynamic range.
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Fig. 4 - Typica l oad-CMOD curves (e - n means x 10')

TEST SPECIMENS sizes Id - 38, 76, ana 152 mm (1.5, 3, and 6 in.)J, were
Three-point (single-edge notched) bending specimens conducted. The measured peak loads and other details

(Fig. 1) were used with concrete of cement:sand: are listed in Table 1. The typical measured load-CMOD
gravel:water ratio 1:2:2:0.6, Type I cement, crusht-d curves are presented in Fig. 4. The CMOD rates were
limestone gravel (maximum grain size - 13 mm), and chosen to give almost the same t, for all the sizes in
standard No. 2 sand (maximum grain size - 5 mm). each series (Table 1). The range of CMOD rates, or t,,
The beams were cast with the notch face at the bottom. exceeds five orders of magnitude (1:10W).
The thickness of the specimens was 38 mm (1.5 in.), In choosing the loading rates at different sizes, one
and the notch length was X~ of the beam depth. The must realize that the same displacement rate used for
notches, cut with a deiaond band saw, were 1.8 mm specimens of different sizes will result in different rates
(0.07 in.) wide. AB the specimens were cured under wa- of deformation of the fracture process zone. Assuming
ter until testing, and had their surfaces sealed with sili- linear viscoelasic behavior through the whole volume
conized acrylic late during testing to prevent loss of of £hespfc tuep, one could calculate the load-point dis-
moisture. The fracture teats were conducted under g0acemiutak ta thai-give the same rate k, of the stress
CMOD control in a W9kN (20-kip) load frame with a intensity factor K, for specimens of different sizes (this
load cell operating in the 8.94kN (20004ib) range. Coin- is achieved for dP/dt - Qx const.). But due to non-
panion cylinders of 76-mm (3-in.) diameter and 152- linear behavior and the presence of a large fracture
mm (6-in.) Length were used to determine the compres- process zone, this does not achieve the same rates of
sive strengthjf 28 days after casting. The cylinders were deformation of the fracture process zone, which is the
capped with a sulfur compound, and tested in a S34-kN condition for which the results for large and small
(120-kip) load frame under stroke control such that specimens can be legitimately compared. To calculatr
failure occurred in about 10 nin. the CMIOD rane that meet this condition, one would

need a priori a goo mathematical model for the rate
SIZE EFFECTI TESTS AT VARIOUS CHOD RATES effect in fracture. But such a model is unavailable.

Pourseriss of tests, each with specimens that were Among various simple possibilities, the condition of
sooeougricaily similar in two dimensions and of three equal rates of deformation of the fracture process zone
ACI MatewW. Jourrni I S~ernbemb*O ober IM9 40



Sstrength limit (or allowable stress) criteria. This implies
that energth is dissipated during failure in a relatively

Strenth large region. When 0 is large, 0 w 1, the behavior fol-
Criterre lows linear elastic fracture mechanics (LEFM), and a,

size *eft10- , /Id/ . In this case, energy is dissipated in a region of
low (EQ.1) 4.V) infinitesimal size at the crack tip. The transition zone

Cq) (taken as 0.1 < 0 < 10), in which the test results usu-

ally lit. is the nonlinear fracture regime.
Eq. (1) has been extensively verified for the fractureof concrete and extended to determine fracture param-

eters and material brittleness."2-- The method has also
been used to determine the change in fracture proper-

.... ties with temperature" and strength.-" However, all the
d/d. = tests have so far been conducted at conventional load-

ing rates, i.e., with t, between 5 and 10 min. Applica-
bility of the method at various rates is to be experimen-

Fag.. -- Siz.e effect law tally validated. For Eq. (1) to apply, specimens of each
size should attain the peak load in about the same time,

is probably best achieved by rates that give approxi- for reasons already explained (differences up to 50 per-
mately the same time t, to peak load. This conditon at cent are probably not serious, but differences in orders
the same time insures that the relative creep deforma- of magnitude certainly would be). The reason is that,
tions outside the process zone at time t, are about the for all sizes, the fracture process zone should be de-
same - another conditon desired for comparability of formed at about the same rate, and the relative creep
different sizes. The rates to achieve equal t, were se- deformations outside the process zone should be about
lected on the basis of prior experimentation, and the the same.
condition of equal t, has of course been achieved only To determine the size effect parameters in Eq. (1)
approximately. The coiresponding CMOD rates for from oN-data, this study used nonlinear regression
various specimen sizes were not equal, but they were of analysis in which the sum of the squared errors in a, is
the same order of magnitude (Table 1). However, once minimized. The optimized values of Bf. and d., ob-
the test results are translated into a mathematical tained by means of the Marquardt-Levenberg algo-
model, the loading rate selection should in the future be rithm (available in standard computer libraries), are
done by calculations. listed in Table 2 for each series of tests. The curves in

The purpose of using specimens of different sizes was Fig. 6 are the optimum fits of the data points by Eq.
to apply the size effect method for determining frac- (1). The coefficients of variation of the deviations of a,,
ture parameters. The method is based on the size effect from the fits are also given. The results demonstrate
law," which in its simplest form reads (Fig. 5) that the size effect is significant at all the rates used,

and that Eq. (1) fits the data reasonably well through
Bf, d the entire time range.

_,11 =, do( The applicability of Eq. (1) might be questioned,
since its theoretical derivation assumes the behavior
outside the process zone to be elastic. There are, nev-

where a,, = P,/bd = nominal strength (maximum ertheless, two justifications: 1) according to the double
nominal stress), P. = peak (maximum) load, d = power creep law," the ratio of creep strain to the true
characteristic dimension of specimen (here, chosen as instantaneous strain, at 28 days, is about 0.9 for 10 = 8
the specimen depth), b = thickness, 0 = brittleness min (the usual static test), about 0.4 for t, = I s, and
number, Bf. and do are the parameters of the model, about 1.9 for t, = 2.5 days. If elastic analysis is ac-
and f,. is some estimate of the material strength. When ceptable for the ratio 0.9, it should also be acceptable
the size is very small, i.e., 0 4 1, ON is not significantly in the range 0.4 through 1.9, provided, of course, the
affected by size, and the behavior is then governed by duration of the loading is the same for all the sizes; 2)

Table 2 - Material fracture parameters

Ave.sa e If,,,4

Seri" 1Set i days MPa MPPa I MPa m[ mim GPa N/m mm
Feet 1.4 28 1.60 102.5 0.10 39.5 17.2 36.0 43.4 0.0146

Usual 500 23 1.6 41.3 0.06 26.3 6.9 28.6 24.1 0.0077
Slow 13,650 38 2.94 13.3 0.09 26.1 2.2 24.1 28.4 0.0052
Very 253,000 106 3.47 8.5 0.01 24.6 1.4 22.4 26.9 0.0042
slow

coefflciem of verimo. of fie deviaiom of the fit from tena da.
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Fig. 6 - Optimum size effect curves for the test data

due to linearity of creep and the rapidly decaying na- 0.,
ture of the creep curve of concrete (for stresses up to"- Sength
about half the strength), quasi-elastic analysis based on * Criria
the effective modulus is a reasonable approximation to -O. .*
the viscoelastic solution."' • sLOW

S-0.3, - ,A ST"• - " ,

SHIFT IN BRITTLENESS IN_ o0___
Since the test results for all the rates agree reasona- -USUL

bly well with the size effect law, they can be combined -O.S. 0000* Fas 11.4;.j
into one plot, as in Fig. 7. Such a combined plot was Slo00 S0 11...360o0
used previously to show the increase in the brittleness ,0o,, Very stow. t 2530002
of concrete with ilreasing strength.3' This clarifies the .I,--_etg. line to peek
effect of rate on the brittleness number. In each series -J.6,7 -. 2 0.12 0 P . ' 1.0 1.4

there are three sets of data. In each set, the most brittle logp
(largest 0) are the largest specimens, and the least brit- Fig. 7- Change in mode of failure with loading rate
tie are the smallest. Now, the interesting aspect is that
there is a significant shift of the data sets toward the This result is similar to that of Bahnt and Prat,"
right (toward LEFM, i.e., ideal brittle failure) as t, in- who applied the size effect method to tests of fracture
creases. This means that fracture becomes more brittle specimens at different temperatures. From their data it
as the loading becomes slower; i.e., the intensity of the can be seen that the brittleness of concrete increases
crack-tip shielding mechanism decreases as the loading with temperature. The effect of time on fracture is
rate becomes slower. The damage and energy dissipa- analogous to the effect of high temperature, since a
tion are more distributed for higher rates. It should be higher temperature means higher creep. This similarity
emphasized, however, that even though the present reinforces the present conclusion.
quasi-elastic approximation approaches LEFM for very Another extrapolation c" the effect of creep on brit-
slow loading rates, consideration of creep in the analy- tleness could be made to the failure of early-strength
sis of structural response becomes more important. concrete. Since creep mechanisms are more dominant at
ACI Materials Journal I September-October 1992 461



Tftle 3 - Fracture perameters corrected kr 20 plane stress, E' - E/(l - rz) for plane strain, E -
ds Young's modulus, v - Poisson's ratio, and 1'(*) -

Swiut E.- GFP K,- MPS4N c, an G. N/,m 6., M- dg(a)/da. The function l(a) can be obtained from
F" 36.0 39.3 17.2 43.4 0.0146 handbooks-u or from LEFM analysis.
UaWAl 28.6 26.3 6.9 24.1 O.oo77 Parameter cf lumps together the effect of all the
slow 22.9 25.3 2.2 28.1 0.0052 toughening mechanisms in concrete, including the de-
Very tl.2 22.7 1.3 28.2 0.0047 flection and bridging of the crack by aggregates, and

microcracking ahead of the crack tip. Note also that the

younger ages, one could infer from this study that crack tip is defined here as the point where the trac-
tion-free crack ends.fracture is more brittle in concrete at earlier ages. The For the present specimen geometry, finite element

data of Wong and Millern on fracture tests at different analysis provided the values g(aj = 5.927 and g' (a0)
ages (I, 5 to 10 min) support this inference.= 35.24. The values of Bf. and d. obtained earlier (Ta-

FRACTURE PARAMETERS OBTAINED BY THE ble 2) can then be used in Eq. (3) and (4) to calculate
SIZE EFFECT METHOD Kk and cf; see Table 2. (Note that the calculated values

SIZEEFFET MEHODof Kk and c/ can have coefficients of variation up to 0.3
The steepness of post-peak load-deflection curves, or and 0.5, respectively.)

the amount of distributed cracking in unnotched speci-

mens, have previously been interpreted as indicators of In view of the preceding comments, the validity of

material brittleness. Though valid in certain cases, such Eq. (2) through (5) may be extended to linear viscoelas-
tic creep, which occurs in most of the specimens exceptindicators are not size-independent and general mecas- in(dveyea)tefcurpoeszn.Thss

ures.in (and very near) the fracture process zone. This is

fracture mechanics. In the present study, the size of the done by replacing E with the effective modulus Ey, (in-
fracture proesshaoneis.I the sent std the masure of bttle- verse of the compliance function) corresponding to loadfracture process zone is taken as the measure of brittle- duration t, Todtrie, heBmdlfrte

ness; a material with a smaller process zone is more praition do determine Elf the BP model for the

brittle. The structural brittleness, on the other hand, prediction of concrete crree was used. Only the ba-

may e gnerllycharcteize bythe ritlenss um- sic creep was considered, since the specimens were
may be generally characterized by the brittleness num- sealed to prevent moisture loss. In applying the BP
her 0 = Eq. (1). Another important fracture parameter model, the asymptotic modulus was modified such that
is the fracture toughness; higher fracture toughness imi- the effective modulus for the loading time of 10 min
plies higher resistance against failure. These quantities would coincide with the ACI code formula E =

*j are also necessary for nonlinear fracture mechanics 4735Z7-, in MPa (or E = S7,0004Tf,, in psi). The E-
analysis of concrete structures, values for the various test series are listed in Table 2.

Since specimen size and shape could have a strong Using the effective moduli in Eq. (2) and (5), the values
effect on the measurements of fracture parameters, ex- of Gf and 5,• are computed and listed in Table 2.

trapolation to an infinitely large size has been proposed Since two series of tests were conducted at ages other

for obtaining unambiguous values."' It has also been than the standard 28 days, the fracture parameters ob-

shown that parameters obtained in this manner are tan the shoua d 2e fractu re para-

practically independent of specimen geometry.1' Based tained from them should be corrected before compari-
onatihe infindtepsizendextrapoftion eofEq impety Bsex- sons are made. The following formulas were used foron the infinite size extrapolation of Eq. (1), simple ex- this purpose: f,' = 0.50 •/j (ACI); f' (t) = f" (28) 1it4

pressions for fracture energy O,, fracture toughness K, t + 0.85:) (ACI); and Gf, (2.72 - 3.103 f )f,' 2d,/E(4

effective length of the fracture process zone c1, and ef- (R ce ), whr f is the t strength; f,'.
fective critical crack-tip opening displacement 6, have (Reference 34), where f,' is the tensile strength; fs, e,

been derived"-'- (see also RILEM recommendation 3 ) and E are in MPa; d. is the maximum aggregate size in
Mun; Gf is in N/ram; t is the age in days; and E., is ob-

I tained from the BP model, as before. It was also as-
0, - (Bfyddg(a&J (2) sumed that the parameter Bf. varies linearly withf,.

(Possible errors in these formulas cannot be important,
since the corrections are small.) The adjusted 28-day

K,,= Bf.•~ (3) values of all the parameters are listed in Table 3.

, deg(a) (4) DISCUSSION OF TRENDS OBSERVED IN
g (W) CONSTANT-RATE TESTS

From Table 3, it is clear that the fracture toughness
&K,(5) K, tends to decrease with increase in t,. This agrees5(5)
' Iwith the well-known reduction in concrete strength as

the loading rate becomes slower. The trend agrees with
where function g(a) is the nondimensionalized energy those obtained by other methods for mortar and ce-
release rate defined by the LEFM relation G - P'g(a)/ ment paste."
E'bld, G = the actual energy release rate, P = load, A new result from the present tests is the significant
a - (crack length)/d = relative crack length, a. = a,/ decrease in the fracture process zone c. as the loading
d, a, - notch or traction-free crack length, E' = E for rates decrease. This implies that the material brittle-
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hess. and consequently the brittleness of structural 2

failure, increases due to creep. The decrease in c, is (a)
probably due to the relaxation of the high stresses in
the material ahead of the crack tip, causing the stress is.
drop to be more concentrated. The trend can be ap-
proximately described by the formula [see Fig. 8(a)J E = eC=/ c(td4)

If\G
6(6)

where te is the reference value of time to peak and c, is
the corresponding value of cf; n = 0.22; and for t, =
600 s (about the conventional testing time), ce = 5.04
mm. , o lo I

Along with K, and cf, 6,f is found to also decrease (
for slower loading. This trend agrees with that ob- 0

served by Wittmann et al.," who, however, concluded (b)
that for very slow loading, the trend reverses. The trend
may also be different in the dynamic range.2'

The variation of the fracture toughness of mortar
and cement paste with loading rate has been described E = ov/re)°'
by means of a power function" Kk = Kov', where K. Eo.
and m are parameters determined experimentally, and a
v is the rate of change of deflection, crack length, or
stress. Similarly. the present test results have been fit- 2S.

ted [Fig. 8(b)] by the equation

Xk = X. (- (7) ................ ..
k;1/ v:8,0/to (I O rtm/sec)

? where v a t/t,, vo is the chosen reference deformation Fig. 8 - Effect of time to peak load on (a) fracture
rate, and Ko = K, for v = vr. From the present data, process zone size and (b) fracture toughness
m = 0.041, and for ve = 5 x 10-1 mm/s, K0 = 30.4MPa¶miiii-m.

For loading rates faster than the usual static test, the Table 4 - Details of relaxation tests of
fracture energy Gf has previously been found to in- unnotched beams
crease significantly with an increase in rate.' 3 ' How- p
ever, at low rates, this trend is not obvious from the Specimen Age, days N
present results. This may be because G, is strongly af- UI 34 990

fected by the decrease in the effective modulus due to U2 39 3420U3 31 3760
creep. Wittmann et al.n proposed that fracture energy U4 30 4580
increases under very slow loading due to the influence P, ted at whic relaxation started.
of reep. The present variation tends to agree with their Approximae peak load - 5600 N at 35 days.Strain rate during loading = 3.6 x 10/sec.
conclusion, but the scatter of the present results for 0, £ f- 28.1 MPa (4076 psi); coefrcient of variation = 0.023.
is too high to draw a firm conclusion. If linear elastic
fracture mechanics were applicable, then one couk.i use ing the beam theory, the maximum bending stress and
the relation G0 = K2,1E to determine that the scatter is strain were calculated as a function of time. The initial
due to E, but the relation of 01 and Kk is more compli- load P, was applied at a rate of maximum strain equal 0
cated. to 3.6 x 10-4/s, which corresponds to the time to peak

t, a I s. After time tt, at which the desired P, was
RELAXATION TESTS OF UNNOTCHED BEAMS reached, the deformation was held constant, and the
To determine the creep or relaxation behavior of the specimen was allowed to relax the load. The tests were

concrete used, four unnotched beams, with b = 38 mm conducted with different P,-values. The measured re-
(1.5 in.), d = 76 mm (3 in.), and span = 191 mm (7.5 laxation curves of maximum bending stress a versus
in.), were tested under three-point loading. A trans- elapsed time (I - t,) are shown in Fig. 9(a). It so hap-
ducer (LVDT of 0.127-mm range) fixed on the-beams pened after that some time the tests could not be con-
measured the deformation over a gage length of 25.4 trolled, since the transducer started to slip; only the
mm (1 in.) centered along the tension face. A com- data for the duration of proper control are shown.
puter-based data acquisition system monitored the load The relaxation is strongest in Specimen U4, which
and deformation. Test details are listed in Table 4. Us- had the highest P,-value. It appears that U4 is in the 0
ACI Materials Journal I September-October 1992 463



characterzed by the relaxation function R (UAL,), where

.(a) I . curran time and 1, - age at the start of relaxa-
tion. The appropriate expression for R (tIt,) may be de-"."_ _ _ _S01u. P,.5,$W duced from the compliance function J (tt,) for creep.

$ - -The logsdouble power law" for the creep of concrete
IPA, %.# U2. P,,O lgives a good approximation: R (tt,) m lJ(tt,). Here,

J YJ) E-(W + 1) and I - a InuI + bt - t,)r],
where E. a. b, and n - empirical constants. For rela-
tively short-term relaxation (hours rather than years),

o UI. P.aWe is small. Then l/(1 + J) a I - •.This leads to the
E -- approximation

. . .. .- =RYt,) = {l - a Inl + b(t - t, (8)
time. I-1, (sec

_ _ _ _ _where a = current bending stress, e, = strain during
relaxation, and Ea = instantaneous modulus, i.e.,
modulus for extremely fast load application. This

0.5modulus is typically 1.5 to 2 times larger than the con-
ventional elastic modulus E that corresponds to the in-

0.30% itial slope of the stress-strain diagram in a typical static
% otest (the reason is that loads of several minutes dura-

* tion suffice to produce considerable creep).N
* •The relaxation tests that were in the linear range (U I.

ul U2, U3) were fitted with Eq. (8) using nonlinear optim-
S.°0* utS \-ization with the Marquardt-Levenberg algorithm. The

parameters obtained were n - 0.36, a - 0.063, and b
0.7= 1.52, with t and 1, in sec. Fig. 9(b) shows the fit and

0.01 0.1 - ( 0 1 16'low lam the data sets. The coefficient of variation was w =
time. it 1 ( 0.053. The average E& was 54,000 MPa (7.83 x 10* psi),

with coefficient of variation 0.1.

For the nonlinear (high-stress) range of relaxation,
-0..(6)the values for Specimen U4 (see Fig. 9(c)] were E& =

"56,000 MPa (8.12 x 10' psi), n = 0.69, a = 0.056, and
"- b = 5.91, with w = 0.019.

RELAXATION TESTS OF FRACTURE

SPECIMENS
SI To gain further insight into the rate effect, time-de-

______ __ pendent tests of a different type are desirable. Creep

2.3° I tests are not feasible in the post-peak stage, since theoooU4. 0"ne~w resp -e
00*0 U4 load cannot be held constant. But load relaxation tests

- - r r- . tWtirn fu0X@ id " are possible, as the deformation (e.g., CMOD in frac-
0.8 . . .. . ture tests) can be held constant. In this study, two se-

0.1

*iMo, t-4, (we) ties of relaxation tests were conducted on 3PB fracture
specimens (Fig. 1) with d = 76 mm (3 in.). In the first

Fig. 9- RelaxateoN tests of unnotched beams: ( c) e- series, the beams were loaded at several CMOD rates
perimental data, (bi relaxation in linear range, and (c) into the post-peak stage and relaxation was initiated at

ion in noier range about 80 percent of the peak load. In the second series

(described later), the same CMOD rate was used for all
nonlinear creep rang- where relative creep is stress-de- specimens but relaxation was initiated at different
pendent. This is the case if an initial maximum bending loads.
stress greater than about 60 percent of the strength is The beams NAI, NA2, NA3, and NA4 (first series)
imposed. At lower stresses; the relative creep or relax- were loaded at constant CMOD rates (see Fig. 10(a)
ation is generally linear, i.e., independent of stress.2 and Table 5, where P., = peak load), until a load P,

(u 0.8 P,,J was reached at time t,. Subsequently, the

CREEP PROPERTIES OF CONCRETE CMOD was held constant, and the relaxation of load
To interpret the relaxation tests of fracture speci- with elapsed time t - 1, was then recorded. The meas-

mens (discussed later), one must firt know the relaxa- ured curves of load versus elapsed time are shown in
tion properties of the concrete outside the process zone, Fig. 10(b). It is obvious that not only the maximum
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Tabe S - Details of fracture reaxation tests HAI
P. Age, CMOD rae.*

Slocialmlif Mn dys nmjsoc P_. N P,. N

NAI" 136 8.5 x 10 ' 3690 3370 V0440
NAZ 33.7 138 S.5 x 10 3670 3050
NAY 140 8.5 x 10 3290 2530
NA4 136 8.5 X 10 rio 2250 w Ha

NBI' 38 3600 3460 V V84
Na2 37 38 3680
NI1' 35.2 SO 8.5 X 10 3810 2130
NBC 36 3Ms0 1620
Nast 51 3430 3430 1000 '
NW 43 - 2390 age

Loadn rte before reluation. c ros es In r0o4MM t8
KRdame .."aWed in pou-pesk stag. crosses denots retovation ittiof

'RemamtOc initiated am peak load.
'tion muttat in prep sae o.o0 OL61 o.62 .03 0 :AI My, - 1as43.0 CUOD (rm)

load but also the relaxation is strongly influenced by (b)
the loading rate. Initially, the rate of relaxation is
higher for specimens that are loaded faster, but the fi- dl

nal slopes are almost the same regardless of the rate of %a'.
initial loading. This was expected for two reasons: 1) .according to the hereditary aspect of linear vircoelas- .10

ticity, the initial stress relaxation is higher for a speci- =16. % "
men loaded faster, as indicated by the superposition 1 , . % , "
integral over the past stress history;"7 and 2) when a 0 . " .'

specimen is loaded at a higher rate, there is more dam- 2041 1 9.

age (larger fracture process zone), and higher stresses b.e." HU ;
near the crack tip. After some time, the delayed linear o,, .

viscoelastic effect of the early loading history becomes ,e .. ..... .. .. "ic 0 0

negligible, and the stresses in the process zone relax to time, t-t, (sOe)
about the same values. Therefore, the relaxation rate
eventually becomes the same for all specimens.

For the load relaxation after time t,, the expression C.)
for linear stress relaxation (Eq. (8)] may be used as

P(t)/P, = I - A nlnm + B(t - t,Y1 (9) 41 "

but the values of the empirical parameters A. B, and N
are expected to differ from a, b, and n. For short times - .
t - t,, this equation can be approximated by P(t)/P, =0..

"I - AB(t-tr), and for long times t - t, by P(t)/P, .... M v.6o0
= (I - A lnB) - ANI n(t-t,). Thus, the product a, M3 V
AN represents the final slope of the plot P(t)/P, versus V-CUOO rate. In 10"4m/aisee
I n(t - t,), and Parameter B engenders a horizontal shift •s .... ......... .
representing acceleration or retardation. a 1 141 ec000 loom loom

The data of Specimens NAg, NA2, NA3, and NA4
were fitted with Eq. (9) by optimizing P(t)IP, (see Fig. Fig. 10 - Relaxation tests of fracture specimens in
10(c)j. In the fitting, the final slope (Parameters A and post-peak state for various CMOD rates: (a) load-
N) was taken to be the same for all four specimens, CMOD curves before relaxation, (b) load relaxation,
while B varied. The trends are modeled reasonably well. and (c) fits of data with model
The parameters and the coefficient of variation W of the
fit are listed in Table 6.

The effects of load and loading stage on relaxation
were investigated in the second test series. Six speci- Table 6 - Parameters of relaxation function
mens were tested: four in the post-peak stage, one near SpeANm A_ _ N
the peak, and one in the prepeak stage [see Table 5 and NAt. NA2 0.032 23.3 0.375
Fig. I I(a) and (b)]. (Note that Specimen NBS, loaded NA3 0.032 2.25 0.875 0.020
until the estimated peak was reached, could lie in either NA4 0.032 0.335 0.875
the prepeak or post-peak stage.) The CMOD rate be- NBi. NB2. 0.036 23.3 0.864 0.032

NB3, N94
fore relaxation was 8.5 x 10- mm/s for all these spec- NM 0.034 23.8 o0.7 o.o0s
imens. The load relaxation plots are shown in Fig. N9 0.034 9.42 0.683 0.008
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Mel

z
LI -

when Specimens NAI and NA2 of the first series were
fitted (see Tables 5 and 6, and Fig. 12(a)). The values
obtained for N and A are about the same. The data for

N493 relaxation near the peak (1411) and in the prepeak stage
125(1411) were also fitted with Eq. (9). For NBS, due to

lack of sufficient data, the value B = 23.8 (from post-
Sa 1= peak fits) was used. The fits are shown in Fig. 12(b),

time I -t IS 1M and the parameters in Table 6. For comparison, the fits

Fig.11 Relxaton tstsof factre secienJ of the post-peak data [from Fig. 12(a)] and linear re-
Fig.11 Relxaton tstsof factre secien~laxation juanotched beams from Fig. 9(b)j are also

same CMOD rates but d~tfferlat d ratiox (a) load-
CMOD curves before relaxation of specimens loaded shown.
beyond the peak, (b) load-CMOD curves beore relax- It is important to note that the relative relaxation in
ation of specimens at and before peak. (c) load relaxa- the post-peak regime is significantly greater than linear
tion relative relaxation. The difference between these two

relaxations must be entirely attributed to time-depend-
11I(c). One interesting result is that the relaxation in the ent behavior of the fracture process zone.
post-peak state appears unaffected by the load P, at The responses at the peak and in the prepeak stage lie
which the relaxation begins. In other words, irrespec- between the post-peak and linear responses. The basic
tive of where relaxation is initiated after the peak, P(t)/ finding is that, in the time rng~e of these tests, relaxa-
A, is the same. tion coincides with the linear behavior at low initial

The data of Specimens NBI, N32, NB3, and NB4 loads before the peak, late increases as the initial load
(post-peak state) were fitted by Eq. (9) with B = 23.8, increases towards the peak and, most importantly, re-
which was the value obtained for the same CMOD rate mains constant through the post-peak range. Also,
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there seems to be an acceleration in relaxation with in- AFOSR Contract 49620-47-C-O030DEF with Nonhwestern Uni'ei-
crease of initial load before the peak. This is similar to sity. The help of undergraduate research assistants D. Klein and D

the acceleration due to increase in the loading rate [see Coe in specimen preparation and analysis of data is gratefully ac-

Fig. 10(c)I, and can be explained similarly. To under- knolged.
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SOFTENING REVERSAL AND OTHER EFFECTS OF A
CHANGE IN LOADING RATE ON FRACTURE OF

CONCRETE

ZdenCk P. Baiant, Wei-Hwa Cu, and K.T. Faber'

Abstract

The time-dependence of concrete fracture, and particularly the effect of loading rate, has so far
been studied mainly in the dynamic range. The present study extends a preceding investigation of
the rate effect in the static range which covered times to peak from 1 s to 300,000 s. Geometrically
similar three-point-bend specimens of three different sizes are subjected to either a sudden 1000-fold
increase of the loading rate or a 10-fold sudden decrease of the loading rate. It is found that the
post-peak softening can be reversed to hardening, followed by a second load peak which can be either
higher or lower than the previous load peak. The rise to the second peak depends on the previous
post-peak load drop from the first peak load. A sudden decrease in the loading rate causes initially
a steeper softening slope. The source of these time-dependent effects appears to be not only the
thermally activated nature of the process of bond ruptures in the fracture process zone but also the
effect of creep, both a nonlinear creep in the fracture process zone and a linear creep in the bulk of the
specimen. The results of this study and a previous study suggest that there is a significant difference
in fracture behavior for short-time and long-time loads. The phenomena observed are of interest, for
example, for the analysis of concrete dams with cracks that evolve over many years.. Mathematical
modeling of the present test results is left for a subsequent study.

Introduction

Understanding of fracture mechanics of concrete is necessary for improving the design of concrete
structures against various type of brittle failure, and particularly for taking into account the size
effect and ductility limitations. Although the classical fracture mechanics is a rate-independent (time-
independent) theory, the fracture properties of all materials depend upon the loading rate. One source
of the rate sensitivity is the process of rupture of interatomic or intermolecular bonds at the tips of
microcracks, which represents a thermally activated process governed by a certain activation energy.
The rate sensitivity is explained by the fact that the probability that the thermal vibration energy

of an atom or molecule would exceed the activation energy barrier of the bond increases with the
superimposed potential due to applied stress or load.

A second source of rate sensitivity is creep (or stress relaxation) in the fracture process zone,
as well as in the bulk of the specimen. The creep effect is negligible at very fast, dynamic loading
rates, but inertia (or wave propagation) effects complicate dynamic fracture. The creep effect becomes 0
important only at sufficiently slow loading rates, complicating the fracture theory, while the inertia
effects vanish. Whereas Wittmann and Zaitsev (1972), Shah and Chandra (1970), Liu et aL (1989)
and others have already suggested that concrete fracture is affected by creep, a detailed investigation
of this effect has not been conducted. On the other hand, the rate effect in concrete fracture has been
extensively investigated in the dynamic range of loading, in which the maximum load is reached in
less than one second; see Mindess and Shah (1986). In a material such as concrete, which exhibits

'McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208 USA
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pronounced creep under long-time loading, the rate effect in the static range and the contribution of
F creep to it may be expected to be particularly strong.

For this reason, a preceding study by Badant and Gettu (1992) investigated the rate effect in
the static range experimentally, using crack mouth opening displacement (CMOD) rates with times
to peak load ranging from 1 s to 300,000 s (3.5 days). The size effect method, coupled with the

effective modulus approximation of creep, has been used to determine the rate dependence of fracture
properties. The fracture toughness was found to decrease with a decreasing rate, as a continuation
of the trend previously known for the dynamic range. As a new, surprising result, the effective

length of the fracture process zone was found to decrease with decreasing rate, which implies that for
slow loading the brittleness number increases and the response shifts closer to linear elastic fracture

mechanics (LEFM). Load relaxation at constant CMOD in the post-peak regime was also investigated
and found to be very pronounced. The time curves of relaxing load where found to be approximately
straight lines in the logarithm of the elapsed time, and the load drop to be several times larger thani
for a linearly viscoelastic relaxation of unnotched specimens for the same relaxation duration. The
difference between these two relaxations has been attributed to time-dependent processes, principally
creep, in the fracture process zone.

From Badant and Gettu's (1992) study it became clear that there is a strong interaction between
fracture and creep, which must be taken into account in predicting the long-term load-carrying capacity
of structures with cracks. This is particularly important for analyzing the failure of concrete dams. in
which large fractures often develop gradually over a period of many years.

As far as materials other than concrete are concerned, the effects of loading rate in the static range
were recently investigated by Baiant, Bai and Gettu (1991) on limestone. The effect of the loading
rate was found to be significant, but less pronounced than for concrete, and no shift of brittleness with
a decreasing loading rate has been observed. This is no doubt explained by the fact that limestone

* does not exhibit any significant creep, so that most of the rate effect must be due to the thermally
activated process of bond ruptures.

The preceding study of Baiant and Gettu (1992) was limited to constant loading rates. The
purpose of the present study, on which preliminary reports were made in several conference papers
by Baiant and Gettu (1989, 1990, 1992), is to present the experimental results on the effect of a
sudden change of loading rate. Knowledge of this effect is essential for formulating a time-dependent
mathematical model for the fracture process zone, which will be the subject of a subsequent study.
By adopting the R-curve (resistance curve) model for nonlinear fracture, the effect of the constant
loading rate has already been successfully described in three brief conference papers (Baiant and
Gettu, 1989; Baiant, 1990; and Badant and Jirisek, 1992), and it may be expected that an extension
of this approach would work also in the case of sudden changes of the loading rate.

Material, Test Specimens and Test Procedure

The material studied was plain concrete, with a mix ratio of cement : sand : gravel : water =

1 : 2 : 2 : 0.6, by weight. ASTM Type I Portland cement was used. The aggregate consisted of crushed
limestone gravel of maximum grain size 13 mm (0.5 in.) and siliceous sand passing standard sieve No.
2, corresponding to maximum grain size 5 mm. The average standard 28-day cylinder strength of the
concrete was f, = 37 MPa (5370 psi).

The specimens were three-point-bent notched beams shown in Fig. 1. Specimens of three sizes.
characterized by beam depths d = 38, 76, and 152 mm (1.5, 3 and 6 in.), were tested (labeled as
S-small, M-middle, L-large). The specimens of different sizes were geometrically similar in two-
dimensions and the beam thickness b = 38 mm (1.5 in.) was constant for specimens of all the sizes.
The beam length was 8d/3, the span was 2.5d, and the notch length was d/6. The specimens were
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'i.st with the notch face at the bottom. The notches were cut with a diamond band saw, and were 1.ý
num (0.07 in.) wide.

The specimens were cured in water for 65 days, at which time they were tested (within a few hours
after retrieval from the water bath). During the tests, the specimens had their surfaces sealed with
siliconized acrylic latex to prevent moisture loss. The specimens and their material were the same as
in the preceding study by Badant and Gettu (1992).

The specimens were tested at controlled CMOD rates. To bring the effects of the loading rate to
light, the loading rate must change by several orders of magnitude, and the change of loading rate
must be sudden, almost instantaneous. This can be achieved only in a computer controlled closed-
loop testing machine. The testing frame must also be sufficiently stiff and the pumps sufficiently
powerful to make such a sudden change of loading rate possible. These conditions were met by using
an MTS closed-loop testing machine (MTS model 318.10, 20 kip load frame using test star digital
controls-MTS Corp. Minneapolis, MN).

Fig. 2(a,b) shows, as an example, the record of the CMOD time history produced by the loading
equipment. It is seen from Fig. 2(a) that, compared to the previous history, the loading rate changes
practically instantaneously since the time curve becomes immediately an almost vertical line. In Fig.
2(b) the time scale is greatly expanded to show the detail of the CMOD history at the time of the
rate change. Here one can discern some imperfections (such as load oscillations just before the steep
rise), however, these imperfections are insignificant compared to the duration of the test.

Effect of Sudden Increase or Decrease of Loading Rate

For a sufficiently large increase of the loading rate, the results shown in Fig. 3 reveal that the
post-peak softening can be reversed to hardening which is followed by a second peak, after which a
new post-peak softening branch begins. The second peak can be higher or lower than the first peak at
the previous slow rate of loading, depending on the ratio of rate increase and on the magnitude of the
load decrease prior to the increase of rate. A typical response is seen in Fig. 3(c), in which the initial
loading rate was 10-5 mm/s, (CMOD rate) and, relatively soon after the peak load P,, the loading
rate was suddenly increased a 1000-times to 10-2 mm/s, at the moment when the load had dropped
to 97% of P,,. The second peak P, occurs at 3725 N (837 lbf.). For loading histories of this type, the
second peak P,, generally occurs at the load of about 110% - 135% of the first peak Pu.

The test results obtained on various individual specimens are given in Table 1. The response
diagrams of load vs. CMOD are shown in Fig. 3(a-f) for specimens of three sizes (small, iliedium.
large) and for different values of the load drop from the previous peak at which the rate was chosen
to be suddenly increased.

Some load-CMOD diagrams exhibit small pseudo-peaks (S5, L2, L4 in Fig. 3(b), (e) (f)) before
the first peak is reached. In some specimens one can see a relatively fiat region (M2 and L2) (Fig.
3(c) and (e)) occurring after the first peak . These two phenomena are probably not systematic and
are caused by random effects, specimen microstructural heterogeneity and similar influences.

In another test series, the faster rate started after a much greater load drop, namely from P" to
0.65%P.. The second peak still ocurred, however it was lower, only about 0.75% P.; see Table 2 and
Fig. 4(a-c).

No second peak was found when the faster rate started after a much greater load drop, from P,,
to 0.26% Pu (Fig. 5).

In a second group of tests, the specimens were loaded at the fast rate and, in the post-peak regime.
the loading rate was suddenly decreased 10-times, from 10-4 mm/s to 10-5 mm/s. The results are
shown in Fig. 6(a-c) and also given in Table 3. The sudden decrease in loading rate was always
accompanied by an almost instantaneous drop in load followed by a conventional post-peak softening
reponse.

3
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Discussion of Results and Conclusions

Tesing several identical specimens at the same loading history reveals that there can be substan-

tial scatter. This is exemplified by specimens MA I and MA2 (Fig. 6(b) and (c)). In future extensions

of this program, it would therefore be desirable to test a larger number of specimens and conduct

their statistical evaluation. Nevertheless, despite the limited scope of the presently reported tests,

the results show overall a coherent picture. Similar effects are seen for different but similar loading

histories and certain trends are clearly discernible. From these overall trends, the following conclusions

may be drawn. b

1. An increase of the loading rate in the post-peak regime causes a stiffening of the response. and

if the rate increase is sufficiently large (several orders of magnitude), the post-peak softening is

reversed to hardening and is followed by second peak.

2. The second peak may be larger or lower than the first peak under the previous constant rate of

loading. The greater the post-peak load drop prior to the rate increase, the smaller is the rise

to the second peak.

3. After a decrease of the loading rate, the descending post-peak slope first becomes steeper but

later the previous slope is resumed again.

4. The effects of the loading rate change are similar for specimens of various sizes (the data for

specimens of various si:-,ýs will be needed for developing a mathematical model).

It is a!so interesting to compare the present results to the results of relaxation tests from Baiant

and Gettu (1992). The relaxation tests correspond to a decrease of the loading rate to zero. The

present results show that the response to a decrease of the loading rate gradually approaches the

relaxation tests.
On the basis of this study as well as the previous study by Baiant and Gettu (1992), one may

infer that by a certain sudden change of the loading rate it is possible to produce any of the loading
slopes shown by arrows in Fig. 7.

I
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Figure Captions

Fig. 1 Geometry of the three-point-bend fracture specimens tested.
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Fig. 2 Typical recorded time histories of CMOD and load achieved by the controls of the test equip-

AV ment used. Part (b) is an expanded version of (a).

Fig. 3(a-f) Measured responses for a 1000-fold rate increase after a load drop to 90-95%Pt, (S-small,
M-medium, L-large specimen).

Fig. 4 (a-c) Measured responses for a 1000-fold rate increase after a load drop to 65%P. (S-small,
M-medium, L-large specimen).

Fig. 5 Measured responses for a 1000-fold rate increase after a load drop to 26%Pu.

Fig. 6 (a-c) Measured responses for a 10-fold rate decrease. (S-small, M-medium)

Fig. 7 Load deflection slopes accessible by changing the loading rate in the post-peak softeuing
regime.
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Table. I
S(d=38 ram), M(d=76mm), L(d=152 mm)

Spec. Age 1st Ratte Ist Peak Rate 2nd Rate 2nd Peak
(day) (mm/.sec) Pu Change (mm/sec) Pu'

Si 66 0.7x10"5  1575 N (91% Pu) 0.7xi0'2 (110% Pu)
20 im 1428 N 1726 N
2940 sec 23 Am 27 ALm

3350 sac 3355oec

$3 66 0.9x10 4  1468 N (95% Pu) 0.xi0-2 (1 12% Pu)
21 pm 1388N 1646N
2730 sec 26 jim 37 gm

3070 sec 3076 sec

"S5 66 0.95xI0-6 14S6 N (93% Pu) 0.95xi0-2 (107% Pu)
15 Am 1379N 1583N
1700 sec 20 jim 24 jim 0

2145 sec 2150 sec

M2 64 i.oxiO 2758N (97% Pu) l.OxlO-2 (135% Pu)
8 Pm 2669N 3725N
800 sac 0 lim 20 jIm

1000 sec 1001 sec

M3 64 1.0xl05 3292 N (91% Pu) 1.0x1o-2 (116% Pu)
15.6 pm 3003 N 3803 N
1560 sec 16.2 jm 27.0 jm

1680 sec 1687 sec

-Li 67 1.4x10"5 4279N (91% Pu) 1.4xjio-2 (103% Pu)
35.6 un 3874 N 4408 N
2516 sec 53.0 jum 64.2pm

3785 sec 3789.9 see
" "- 67 1.8x10 4  4248.N (90% Pu) 1.8x10-2  (102% Pu)

30.4 }im 3817N 4319N
1690 sec 44.2 pjm 49.4 pjm

2450.4 sec 2453.9 sec

IA 67 1.8x10 4  4163N (89% Pu) 1.8x10-2 (107% Pu)
35.9 Lm 3701 N 4469 N
2020.4 sec 39.8 urn 60.6pým

12*235.4 sec 2242.3 sec

S... .. .. . :, . .... : : .•. ,-i i* l l i i ili / i l l - - f I I -" . . .



Table 2.

S(d=38 mm), M(d=76mm), L(d=152 mm)

S'pe. Age 1st Rate 1st Peak Rate 2nd Rate 2nd Peak
(day) (mm/sec) Pu Cange (am/see) Pu'

82 66 1.0x10 4  1600 N 63% Pu) 1.jx1 (71% )
12 lLm 1001N 1134N
1150 sec 45 pm 51 pm

4520 sac 4527 sec
M5*T 5 1.0x10-5  4404 N (66% Pu) 1.x1- (75% Pu)

15 ym 2891 N 3314 N
1500 sec 30.5 /m 37;Lm

3115 sec 3119 sec
W3 67 I.Sx10 5s 3345 N (64% Pu) 1.8xi0-2 (77% Pu)

25.9 pm 2148 N 2562 N
1420 sec 91.7 pm 134 pm

5115 seec

S4 66 Voz210PM N .i0-' 5._1n0-
16 Pm 467N Euk
1105.4 sec 144 pm

7060.3 sec

(,



Table 3.

S(d-1.5 in), M(d-3 in)

Iday) (mm/sec) Pu Change (mm/sec)

SAt 68 1.Oxl0S 2103 N (82% Pu) 1.01T
27 pm 1717 N
2778 sc 43 pm

4444 sec
SA2 68 5.Ox1O04 2259 N (81% Pu) 5.Ox10-O

26 pL 1828 N
53 sec 53 .•m

108 sec
SA3 68 1.Ox 10-4 2028 N (70% Pu) 1.0x10-4

19 pm 1419N
182 c 35 p~m

344 see
MA1 68 L0x10"4 2268N (74% Pu) 1.0x10-G

33 pm 1668 N
321 sec 82 prn

789 sec
MA2 68 1.0xl04 2820 N (64% Pu) 1.0xiT 5

14j•m 1806N
132 sec 52 pm

537 sec
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R-curve modeling of rate and size effects in quasibrittle fracture
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AIsuawt. The equivalent linear elastic fracture model based on an R-curve (a curve characterizing the variation of the
critical energy release rate with the crack propagation length) is generalized to describe both the rate effect and size
effect observed in concrete, rock or other quasibrittle materials. It is assumed that the crack propagation velocity
depends on the ratio of the stress intensity factor to its critical value based on the R-curve and that this dependence
has the form of a power function with an exponent much larger than I. The shape of the R-curve is determined as the
envelope of the fracture equilibrium curves corresponding to the maximum load values for geometrically similar
specimens of different sizes. The creep in the bulk of a concrete specimen must be taken into account, which is done by
replacing the elastic constants in the linear elastic fracture mechanics (LEFM) formulas with a linear viscoelastic
operator in time (for rocks, which do not creep, this is omitted). The experimental observation that the brittleness of
concrete increases as the loading rate decreases (i.e. the response shifts in the size effect plot closer to LEFM) can be
approximately described by assuming that stress relaxation causes the effective process zone length in the R-curve
expression to decrease with a decreasing loading rate. Another power function is used to describe this. Good fits of test
data for which the times to peak range from I sec to 250000 sec are demonstrated. Furthermore, the theory also
describes the recently conducted relaxation tests, as well as the recently observed response to a sudden change of loading
rate (both increase and decrease), and particularly the fact that a sufficient rate increase in the post-peak range can
produce a load-displacement response of positive slope leading to a second peak.

I. Introduction

The rate of loading as well as the load duration is known to exert a strong influence on the
fracture behavior of concrete. Much has been learned in the previous studies of Shah and
Chandra [l]; Wittmann and Zaitsev [2]; Hughes and Watson [3]; Mindess [4]; Reinhardt [5];
Wittmann [6]; Darwin and Attiogbe [7]; Reinhardt [8]; Liu et al. [9]; Ross and Kuennen [10]
and Harsh et al. [11]; in particular, it has been well established that the strength as well as the
fracture energy or fracture toughness increases with increasing rate of loading, roughly as a 0
power function of the loading rate. The previous studies, however, focused mainly on the size
effect under dynamic loading, at which the loading rates are very high. At such high rates, the
rate effect is mainly due to the thermally activated process of bond ruptures, arising from the
effect of stress on the Maxwell-Boltzmann distribution of thermal energies of atoms and
molecules. 0

In this study, we focus on the rate effect at static loading rates at which the creep properties
of a material such as concrete begin to play also a significant role, aside from the thermal
activation of bond ruptures. The rate effect at such low rates, which is no doubt closely related
to the effect of load duration, needs to be known for the design of civil engineering structures
carrying high permanent loads or subjected to long time thermal or shrinkage stresses. For such
conditions (which are, for example, important for the fracture of dams), the rate effect in concrete 0

'Walter P. Murphy Professor of Civil Engineering.
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fracture has been essentially unexplored until the recent experimental studies of Balant and
Gettu [12-15].

The difficulty for materials such as concrete (which also includes rocks and tough ceramics)
is that a nonlinear fracture model taking into account the existence of a large fracture process
zone is required. Such materials, nowadays widely called quasibrittle, exhibit a transitional size
effect in terms of their nominal strength; for small sizes, the behavior is close to plasticity, for
which there is no size effect, while for very large sizes the behavior approaches linear elastic
fracture mechanics (LEFM), for which the size effect is the strongest possible. As recently
discovered (Ba~ant and Gettu [12 -15]), the size effect plot, i.e. the plot of the nominal strength 0
versus the characteristic structure size, is significantly influenced by the loading rate or loading
duration. Generally, the loading rate or duration significantly influence the brittleness. Mathe-
matical modeling of this phenomenon is the principal aim of this study.

In previous work, the effect of loading rate on the size effect has been aproximately
described by quasielastic analysis, in which the behavior at each loading rate for all the
specimen sizes is described according to LEFM with an elastic modulus that in effect
represents the well-known effective modulus for creep. Such analysis brought to light the
changes of brittleness; it, however, cannot be used as a general model if, e.g., the loading rate
would vary with time.

In this study, we will attempt a more general and fundamental model, which can be readily
generalized to arbitrary loading histories. The model will represent an adaptation of quasi-
linear elastic fracture analysis by means of the so-called R-curves. The general principles of this
approach, without any experimental verification, have already been suggested in Ba2ant
[16. 17]. In the present study we refine and extend this mathematical model and compare it to
test data.

The most general and fundamental approach for capturing both the size and rate effects in the
fracture of concrete and other quasibrittle materials is of course a constitutive model for the
evolution of damage in the fracture process zone, with an appropriate localization limiter. Such
a model, which will be required for general finite element codes, should be the objective of future
investigations.

2. Basic equations

The R-curve (resistance curve) approach represents an attempt to describe the nonlinearity
of the law of crack propagation in quasibrittle materials using an approximately equi-
valent linear model in which the fracture energy is considered to depend on the length of an
equivalent linear elastic crack. This equivalent crack is defined as a crack in a linear elastic 0
material having the same compliance as the actual specimen with a large nonlinear fracture
process zone (Fig. I).

Let us denote the initial crack length by ao and the current crack length by a. It is often more
convenient to work with nondimensional quantities oto = ao/d and x = a/d, where d is the total
length of the ligament (Fig. 1). According to LEFM, an applied load P causes a load-point
displacement

u = -C(l), (1)
E'b
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(a)

Fig. I. 3PB specimen with (a) a nonlinear process zone, (b) an equivalent elastic crack.

a crack-mouth opening displacement (CMOD)

P
A = P-),X= (2)

E 'h

and a stress singularity described by the stress intensity factor

PO
K = r- k(2), (3)

hl d

where E' = E for plane stress, E' = E,(! - v2) for plane strain (E and v are Young's modulus
and Poisson's ratio, respectively), b is thickness of the specimen and C((), 6(0), k(2) are
nondimensional functions depending on geometry. It can be shown (c.g. Balant and Cedolin 0
[16]) that ((2) and k(2) are related by

C(2) = C(O) + 2J (i) di, (4)

where C(01 is the compliance of the same specimen without any crack. For a three-point-bend
(3PB) specimen with span-to-depth ratio l:d = 2.5:1 we have (Ba2ant and Kazemi [19]

13 3101 + v)
00) 4 + -- d- = 5.4O6 + 1.5v, (5)

k(2) = 3 .7 5 v/'7-_(l - 2)a 2(1 - 2.52 + 4.4902 - 3.9823 + 1.33a"), (6)

6(=) 14.12[0.76 - 2.282 + 3.8722 - 2.0423 + 0.66(l - 2)-2]. (7)

The graphs of nondimensional functions k(o) and 6(=) are shown in Fig. 2a,b.
The Griffith criterion for crack propagation in perfectly brittle materials states that the crack

can propagate if the energy needed to create a new free surface is balanced by the elastic energy
release from the structure. This condition is equivalent to K = K, where K is the actual stress
intensity factor and K, its critical value, called fracture toughness.

The usual rate-independent version of the R-curve model for crack propagation in quasi-
brittle materials is based on the assumption that the energy needed to propagate the crack is not
constant, but increases due to growth of the nonlinear fracture process zone with increasing S
crack length. According to this assumption, K, is replaced by the function,

K,(c) = ER(c), (8)

I • • 0 0 0 0 0.
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Fig. 2. Graphs of (a) k(a). (b) 6(a), (c) p(y), (d) f(K, Ki).

which depends on the crack propagation distance c = a - ao. The resistance function R(c),
whose graph is called the R-curve, can be determined solely from maximum loads of similar
specimens of different sizes, using the size effect method described in Ba2ant, Gettu and Kazemi
(20]. Aside from geometry, R(c) depends on two material constants Gf and cf representing the
fracture energy and the fracture process zone length at the peak load for an infinitely large
specimen. Based on the size effect law (see [18], Sec. 12.3 and 13.9), it has been shown (Balant
and Kazemi (19, 20]) that the shape of the R-curve is determined by the equations

R c g'() (9)

Gf c g'(ao)

and

-ý a + O1 (o ) (10)

where g(a) = k2(a) = nondimensional function depending only on geometry. Choosing a se-
quence of a-values, one calculates for each of them the value of C/Cf and the corresponding
RIG,.

S•@

L
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Obviously, the relation between R/G1 and c/c1 depends only on the shape (geometry) of the
structure. It is therefore convenient to separate the effects of geometry from the material
properties and write

CR(c) = Gfp{'y), y' =- (!1)

where p is the normalized resistance function depending on geometry only. Its graph (the
normalized R-curve) for a three-point bend (3PB) specimen with span-to-depth ratio 2.5:1 is
shown in Fig. 2c.

Combining (8) and (11), we get

KR(c) = E- Gf lp(y) = K1f lp(/), (12)

where Kf is the fracture toughness for an infinitely large specimen.
To capture the effects of the loading rate, we assume that the crack propagation rate

d = da/dt depends on the current values of K and KR:

d = f(K, KR). (13) 0

Since K = -E'G(a), KR = /E'R(c), this is equivalent to assuming that d is a function of G(a)
and R(c) where G(a) is the energy release rate. It is clear that d should increase with increasing K
and with decreasing KR. But what should be the actual form of the crack growth rate function
f(K, KR)? Experimental evidence indicates that changing the loading rate by several orders of
magnitude causes the peak loads to change only by a factor less than 2 [14, 15, 26]. Therefore,
the crack growth rate function should allow for a very large variation of d with only moderate
changes of its arguments. This can be achieved by .'-tting

f(K, K) = K ( , (14)
KR

where K and n are constants. It is expected that n > 1, so that d varies with K as indicated in
Fig. 2d.

Equations (1) and (2) have been based on the assumption of linear elasticity. Under loading
rates spanning over several orders of magnitude, creep effects can play an important role. Creep
in the bulk of the specimen can be taken into account by replacing 1IE' by an appropriate
compliance operator, which yields

tot) = J(t, t') d[P(t')C(t')], (15) 0

A(t) I J(t, t') d[P(t')65t')]. (16)

b0

S .. . . . . ... . .. . . . .
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J(t, t') is the compliance function, which must be determined in advance by measuring or
estimating the creep properties of the material. The geometric compliances C, 6 are time
dependent because they vary with the relative crack length 0, which increases as the crack
propagates.

Experiments performed under load control become unstable after the peak load has
been reached. To study the descending part of the load-displacement curve, displacement
control must be adopted. The available experiments [14, 15, 21] have been performed under a
constant CMOD rate. In such a case, the time history of CMOD is described by a linear
function

A(t) = r(t - to), (17)

where to is the time at the beginning of the experiment and constant r is the prescribed
CMOD rate. The unknown functions P(t) and ,,(t) describing the variation of the applied load
and evolution of the crack length can be determined by solving the crack propagation
equation (13) along with (16). Using relations (3), (12), (17) and a = ad, we can rewrite the
basic equations as

i(t) = ( f (- k[o(4t)], Kf p[(:t(t) - '(o) (18)

bA(t) = { J(t, t') d[P(t')6(t')], (19)
o0

where the function f is defined by (14). The CMOD history A(t) is specified as input, to simulate
the present tests. Alternatively, the load point deflection history u(t) can be specified as input. As
still another alternative, the load history P(t) may be specified as input and then, first, (18) is
solved for 2(t) and, second, A(t) is evaluated from (19). The initial conditions are

oi(to) = oto, P(to) = 0, A(to) = 0. (20)

3. Numerical solution

To solve the problem numerically, we divide time into equal intervals Qtj, ti+ I >, i = 0, 1, 2,..., N,
with tj = to + iAt. Suppose that we have already computed approximate values 01 = 01(ti),

P, = P(t1 ) for i = 0, 1, 2 ... , j and we want to proceed to oj+ 1, Pj+ 1. Equations (18), (19) can be
discretized in (ti, tj, I> as follows:

2_+I_- _ = It f [PJ+ Ib+PjktJ2+ + 2J)OKt[(:÷ 2+ O j °)d ]+ (21)

bA+1 = J tj+1t 12+ t[Pi+ I 6(ai + 01 - P16(AIJ], (22)
0 2 •



R-curve modeling 361

where Aj+ 1  A(tj+ 1) = r(j + I) At for tests with a constant CMOD rate. For convenience let us
denote

Jjij = J (ti+ 1, tj+÷ + t (23S2 ti (23)

60= (24)

j-I
Sj= Y J(Pi++ A - PA6). (25)

i=O

Equations (21), (22) are two nonlinear equations for unknowns Pj oj +1 . Noting that (22) is
linear with respect to Pj+ 1, we can express Pj+ as

P++ I= [ -J I + Pij•- +) (26)

and substitute this expression into (21). We end up with a nonlinear equation with only one
unknown + +,. As the right-hand side of (21) is highly nonlinear, a robust numerical procedure
must be choscn to assure convergence. Aftei bome experimentation, an algorithm based on a
secant rather than tangent formula has been adopted.

Special treatment is necessary in the first few time steps when the process zone is very
small and KR is therefore close to zero. In fact, at time to we have KR = 0, K = 0 and the ratio
K/KR is not defined. Even though we do not need to evaluate this ratio at to but only at
to + (At/2), o, is at the beginning of crack propagation very close to oto and numerical
problems arise due to strong sensitivity of the high power (K/KR)" to even very small changes
of c.

To overcome these difficulties, we need to make use of an approximate analytical solution, 0
which can be derived under the simplifying assumptions that 0C - Oto 4 I and that P is a linear
function of time

P(t) = P(t - to), (27)
0

where P is a constant to be determined later. For small values of a - oto, k(o) can be replaced by
ko = k(20) and p[(2 - oo)d/c1 ] by fi(o - oeo)d/cf, where 3 = p'(0). Equation (14) can now be
transformed to

K(i)"= C( (-to (28)

where

Co K - ko-- V4 (29)

d ... . •V/,0



362 Z.P. Ba!ant and A1. Jir6sek

Solving the approximate crack propagation equation (28) by separation of variables, we
get

2 = 2o + Cdt - to)•n I 2IA.+ 2), (30)

where
0

c T=(on _+2 )2•.2C1  -( -"•22 (31)

It is interesting to note that if n is large, o - 20 is approximately proportional to (t - to)2

Except for P, all the quantities in expressions (29) and (31) defining C, are known. P can be
determined from the load-CMOD relation (16). If x - or0 < I, we can treat 6(ar(t)) as approxi-
mately equal to bo = 6(a,). Using P = P(t - to) and A = r(t- to), (16) can be simplified to
br(t - to) = 16o0f'J(t, t')dt', from which

P = br(t - to) (32)
bof5oJ(t, t')dt'"

The fact that the right-hand side of (32) depends on time contradicts the assumption
P = const., but we can think of each time instant t = tj separately, approximating the history
of P(t) in the interval <to, ti> by a linear function whose slope depends on the time instant
under consideration. The analytical solution (30) is used only in the first few steps. We exploit 0
it to initialize the crack propagation and get a reasonable estimate for the initial crack
propagation rate. In fact we need only an order-of-magnitude estimate as the initial approxi-
mation for the previously described numerical procedure. The rates of crack propagation at
the very beginning have nearly no influence on the later stages of the process and they are
needed only as the approximations to start with. Therefore, the present simplifications are
justified.

It has been observed experimentally [20] that after the peak load R(c) ceases increasing but
remains constant. The explanation is that after the peak load the process zone length ceases
growing and travels across the ligament approximately as a rigid body.

4. Comparison of theory to constant CMOD rate tests

Performance of the proposed model has been compared with the experimental results reported
C14], [15], [21] and [26].

Ba~ant and Gettu investigated simultaneous rate and size effect for three-point-bend concrete
specimens. Each experiment was performed under a constant CMOD rate. They tested
specimens of three different sizes (d = 38 mm, 76 mm, 152 mm) and applied the CMOD rates
ranging from 4 x 10- in m/s to 10 - m/s, with the corresponding times to peak ranging from 3
days to I second. Table I shows the peak loads recorded for each test. Most of the specimen
were tested at 28 days after casting, but some of them were much older (up to 120 days). To get
comparable data, the measured peak loads have been adjusted to the same age (28 days) using a S
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Table 1. Experimental results by Balant and Gettu [14]

Depth CMOD rate Age Peak load
[mm] [mis] [days] [N]

38 1.1 10-1 28 2217
38 .1 10- 5 28 1883
38 8.4 10- 6 28 1794
38 2.410-8 28 1639
38 1.810-s 28 1774
38 1.8 10- 28 1818
38 7.1 10-10 40 2256
38 7.1 10-10 38 1891
38 7.1 10-10 39 2128
38 3.8 10- " 120 2007

76 1.4 10-5 28 3612
76 1.410-s 28 3946
76 1.4 10-5 28 3014
76 5.3 10-8 28 3059
76 4.3 10-8 28 2750
76 3.6 10-8 28 2790
76 1.1 10-9 30 3153

76 1.0 I0-9 46 3465
76 9.4 10-10 42 3417
76 7.410-11 108 2995

152 2.1 10-5 28 6158
152 2.1 10-s 28 5919
152 2.1 I0' 28 5406
152 7.1 10-8 28 5007
152 7.1 10-s 28 4210
152 7.1 10-s 28 4185 0
152 1.7 10-9 31 5239
152 1.4 10-9 32 4216
152 1.4 10-9 38 4085
152 1.310-10 90 4332

simple approximate empirical formula

Ppek.2s = Pskjr0.86 + -- (33)• to

where to is the age at testing in days, P1 Skl 0 is the measured peak load and Peak.28 is the
corrected peak load. The creep compliance function J(t, t') has been approximated by the
well-known double-power law (see [18], Sec. 9.4):

, 1
J(t, o ) [•u + ok(t'"- + aXt - t'en. (34)

In agreement with the data from [14], the parameters of this law were set as follows:
Eo = 48.4 GPa, 0 1 = 3.93, m = 0.306, n = 0.133, a = 0.00325.

It is clear from Table I and Fig. 3a that the experimentally determined values of the peak
1I load suffer from considerable scatter, which can be explained by the fact that the specimens 0
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Fig. 3. Comparison with experiments for concrete: (a) three point bending, (b) wedge splitting.

were cast from several batches of concrete. Nevertheless, some general trends can still be
observed:

"* The peak loads increase with increasing rate of loading.
"* The rate dependence of peak loads is stronger for large specimens than for small ones.
"* The nominal strength decreases with increasing size, approximately following the size effect

law proposed by Ba~ant [24].
"* The size effect on peak loads is stronger for slow loading rates than for fast ones.

It may be somewhat surprising that the size effect and the rate effect in concrete appear to be
mutually dependent. In terms of size effect, a decreasing rate of loading causes a shift towards
more brittle behaviour. The same phenomenon can be described in terms of rate effect as an
increase of rate sensitivity with increasing size.

In contrast to concrete, no interaction of size and rate effect could be observed for lime-
stone [15]. This could probably be explained by absence of creep in limestone, both within the
bulk of the specimen and within the fracture process zone. This means that the rate effect in
limestone is due solely to the thermally activated process of bond ruptures, producing the crack
surfaces. 0

In an attempt to fit the aforementioned experimental data by the proposed rate-dependent
R-curve model, it has been discovered that the originally proposed version does not exhibit any
shift of brittleness. It was therefore not difficult to get a reasonable agreement between theory
and experiments for limestone (Fig. 4), while for concrete (Fig. 3a) it was impossible to get a
good agreement for all the rates and all the sizes at the same time.

It is nevertheless encouraging that the model can capture both the size effect and the rate
effect, although not their mutual interaction. Let us briefly describe the role of free parameters,
whose values can be adjusted to get the best fit of experimental data:

* Parameters K and Ks are mutually dependent, so that only one of them can be regarded as a
free parameter. By increasing K1 or decreasing K, the peak loads are increased for all the rates
and sizes in the same ratio.
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Fig. 4. Comparison with experiments for limestone. Fig. 5. Graph of f for different ratios n/2m.

"* Parameter n affects mainly the rate sensitivity (for all the sizes in the same manner). By
increasing n, one can decrease the slope of the rate effect curve, which is indicated by
experiments to be roughly linear when the CMOD rate is plotted in a logarithmic scale.

"* Parameter cf affects brittleness, and does so for all the rates in roughly the same manner.
Increasing cf causes a shift toward the left on the size effect curve, i.e. to a more ductile
behaviour.

To decrease the rate sensitivity of the model to realistic values, a very large exponent n is
needed. For example to fit the data on 3PB experiments on concrete [14], n had to be set equal
to 38 (Fig. 3a), and for similar experiments on limestone [15] even to 55 (Fig. 4)!

The rate dependent R-curve model has also been used to model wedge-splitting tests on
concrete reported in [21]. Due to considerable scatter in these large-scale tests, it is impossible
to make any quantitative conclusions. However, similar trends as in 3PB tests can be observed
(Fig. 3b). The value of the exponent n came out to be 35, which is about the same as for the
aforementioned 3PB experiments.

5. A generalization: rate-dependent process zone length

The original version of the rate-dependent R-curve model presented in the foregoing suffers by a
serious drawback: It is not capable of modeling the rate-dependent shift of brittleness observed
experimentally by Balant and Gettu [14]. In an attempt to increase flexibility of our model, we
may replace the constant value of c1 (process zone length at peak load for an infinitely large
specimen) by a rate-dependent function cf((d). The rate-dependence of cf is not illogical. Stress
relaxation in the fracture process zone may be expected to cause the stress profile along the
crack extension line to develop a steeper drop to zero, spanning a shorter length, which means
that the effective fracture process zone length should be smaller at slower crack propagation.

As explained in Section 3, cf is the basic parameter affecting brittleness. Because brittleness is
seen to decrease with increasing rate, cf should be an increasing function of 6. However, cf
should vary only by a factor of 10 while the rate of loading (and therefore also the rate of crack •
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propagation) varies over five orders of magnitude. It is therefore reasonable to ub. a power
function with a low exponent

cs = CfsO( (35)

where m ý, 1. For the sake of dimensionality we have introduced here, in addition to m, two
more parameters Cso. do, but only one of them is independent. The other one can be preset to
any (positive) fixed value without any loss of generality.

With cf dependent on d, the crack propagation equation (13) now becomes an implicit law for
the crack propagation rate d. If the model is to be physically reasonable, there must exist a
unique nonnegative solution j for any possible situation. This condition imposes a serious
restriction on the value of m. A simple analysis of this restriction can be performed if we
approximate p(c/cf) by a piecewise linear function

C0( -C if< 1, if- _> 1. (36)

The function f defined by (14) can now be written as

p, )P[P C•" )]c •-ft2 =f "1-!

f(K, K Rt) = K [ ) C (37)

Suppose that the current values of P, k, c are given and we want to solve (14) for unknown c.
Denote by dc the value of 6 for which Cf(d) = c. If 0 < a < d, then cf(d) < c, p(c/-cf(4)) = I and
f(K, KR) = fo. If d > d, then cf(J) > c, p(c,/cf(4)) = c/cf(J) and

C F 12" =fo-d' (8•

y(rK KR) = fo_•,o(•(f 1 2
m. (38)

The right hand side of (38) is graphically presented in Fig. 5 for three different cases. It is
clear that if ni2m < 1, equation d = f(K. KR) has a unique positive solution for any values of fo
and di,. However, if n/2m > 1, the equation has no solution or two solutions depending on
whether fo > tc, or fo < d, Thus, to ensure a proper formulation of the crack propagation
equation, the parameter m in (35) must be larger than n/2, n being the exponent in (14). This
condition has been derived under the simplifying assumption (36), but numerical calculations
reveal that the method indeed does not converge if m < n/2 and sometimes even if m is only
slightly above n/2.

It has been mentioned in Section 4 that, in order to ensure realistic rate sensitivity, n must
assume very large values, typically between 30 and 40. On the other hand, m should not be too
large if we want to get a substantial shift of brittleness. Unfortunately, M > n/2 must hold,
otherwise the problem of crack propagation is not well-posed. The best fit of experimental results
that could be constructed with rate-dependent Cf is still underestimating the measured peak
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Fig. 6. Generalized model with variable c1: (a) rate effect. (b) experimental size effect. (c) numerical size effect.

loads for small specimens under slow loading rates (Fig. 6a). In terms of the size effect, this

means that the parameter do in the size effect law 124] 0

Bf, (39)

+ d

does not change with rate as much as it should, according to the tests of concrete (see Fig. 6b, c).

The theoretical curves in Fig. 6a correspond to the following set of parameters:

K = 8 x 10-6 m/s, Kf = 9 x 105 Nm- 3 1
2, n = 29, Cfo = 0.014 m, do = 0.01 m/s, m 17. Let us

emphasize again that only four of these six parameters are independent.
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6. Comparison to tests with a sudden rate change

Ano"t-r set of experiments on rate effect in concrete fracture was performed by Ba~ant. Gu and
Faber [25], who studied the effect of a sudden change of loading rate. In their tests on 3PB notched
specimens, the initial CMOD rate was held constant in the prepeak range and in a part of the post-
peak range. After the load decreased from its peak value P , to some lower value P,, the CMOD rate
was suddenly ;,, reased or decreased by several orders of magnitude and the test continued with the
new valu, -" a constant CMOD rate. This resulted into a sudden change of slope in the
load-C' I OD diagram. For a sufficiently large increase of the loading rate, the load started
increasing again and a second peak P2 could be observed (Fig. 7a). On the other hand, a decrease of
the loading rate was followed by a fast drop of the load-CMOD curve (Fig. 7b). The rate-dependent
R-curve model exhibits qualitatively the same behavior (Fig. 7c). The tests suggest that, after a rate
change, the curve for the new rate asymptotically approaches the curve for a constant rate test with
a rate equal to the new rate. The theory agrees with this behavior also (Fig. 7c).

load (a) load (b)
P , P , -- -- -

P2 -- -- -- -- P C - ------ --

PC

CMOD CMOD

Relative
change(c) load of rate:

103
102

10 1

1 00

10-1

CMOD
Fig. 7. Load-CMOD curves: (a) experimental curve (rate increasedL (bI experimental curve (rate decreasedL )i)
theoretical curves.

--- =,=i"•"lil lii i~l ililii i . .. . . . . I • I I "0
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P2/P, (a) Theory:
140 7 large

120I .-medium

100. '*,small

60 Experiments;

40 00000 large
00000 medium

20 00000 small

0 .... 20 .... '0 .... 60 ... '0 00

PC./PI

P2/P, (%) (b) P2/P1 N•) (C)
140 Initial rate 10-12-10-r m/s 140 Relative rate change'- 104

120 Relative rote change 103 120 '103

100 100 -10"

80 80

60 60

40 40 5
20 20

0 20 40 60 80 100 0 20 ' 60 80 100
PC/P (N) PC/P, (Z)

Piq. N. Second peak versus load at rate change: (a) effect of size, (b) effect of initial rate, (c) effect of relative rate change.

Quantitative agreement between theory and experiments can be verified by plotting the ratio
P, P, versus P,. P1 for all available results. The points marked by different symbols in Fig. 8a
correspond to tests on specimens with three sizes (d = 38 mm, 76 mm, 152 mm) in which the rate
increased by three orders of magnitude ion the average from 10's m/s to 10-s m/s). The results S
seem to be independent of size.

The relationship between the two nondimensional ratios P/IP1 and P2/PI can be calculated
using the rate-dependent R-curve model described in previous sections. Instead of trying to
adjust the parameters so as to fit the experimental data, their values were taken from the best
fit of tests by Bakant and Gettu [14] constructed in Section 5. It is gratifying that these
parameter values lead to a satisfactory agreement with measurements by Bakant, Gu and
Faber [25].

The theoretical curves are only slightly dependent on size (Fig. 8a) and almost independent of
the initial rate (for the same relative rate change--Fig. 8b). But, as expected, they are sensitive to
the relative rate change (Fig. 8c).
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7. Comparison to relaxation tests

The paper by Balant and Gettu [14] reported still another type of experiment on the rate effect
in concrete fracture - relaxation tests. The CMOD rate was initially held constant and after
some time (usually in the post-peak range) suddenly decreased to zero. This type of test can be

P/P 1
(a) 1.0 : ,

(a). 0.9

0.8 U , .,
CMOD rate

0.7 (1urm/s): * * , ".,,

*.... 0.084 a.

0.6 .". . 0.84
...... 8.4

,***, 8.4
0.5............ .................... .....

0.1 1 10 100 1000 10000 100000

t-t. (sec)

P/P 1
(b) 1.C

0.9

0.8

0.7

0.6 CMOD rate: 8.4 .84 .084
(/Um/s)

0.50.5 0.1 I 10 1001 . 1000
t-t, (sec)

Fig. 9. Relaxation curves for different initial rates: (a) experimental, (b) theoretical. 0
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P/P 1

(a ) 1.0 " " : "

0.9

0.8 %.:. "

0.7 • .

Relaxation start: * *a

0 .6 : :Iprepeak 5.

0.5 ..... peak 0
0.5 ] ..... post-peak

0.4 0.A 1 0 .1 .6 10 1 ..00

t-t,, (sec) •

P/P 1

(b) 1.0 Relaxation start: 0

0.9 - prepeak

0.8
0

0.7 •/peak

, post-peok
0.6

0.5V10"0.01 0.':1 1 10....... ........... . •...v.. •

t-tc (sec)
Fig. 10. Relaxation curves for different loads at relaxation start: (a) experimental, (b) theoretical.

regarded as a limit case of the experiments with a sudden change of rate. All tests were
performed on medium size 3PB specimens (d = 76 mm).

In the first series of experiments, the initial rates were different and relaxation started in the
post-peak range at about 85 percent of the peak load. Denoting the time at which relaxation
started by t, and the corresponding load by PC, one can plot the relaxation curves P(()/P, versus
t - t,. The experimental and theoretical relaxation curves are shown in Fig. 9. A qualitative •

• i •..... ..
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agreement can be observed - the curves corresponding to different initial rates have the same
final slope in a logarithmic plot and are shifted with respect to each other. However, the slope of
the theoretical curvc ' is much steeper than of the experimental ones.

The second series of experiments was conducted with the same initial rate (r = 8.5 x
10-6 m/s) but relaxation started at different stages - in the prepeak range, at peak, and at
different load levels in the post-peak range. Figure 10c reveals again only a qualitative
agreement - the relaxation curves starting in the post-peak range lie below the curve starting
approximately at peak, which in turn lies below the curve starting in the pre-peak range. The
theoretical curves are again steeper than the experimental ones.

8. Conclusions

1. The equivalent linear elastic fracture model based on an R-curve (a curve characterizing the
variation of critical energy release rate with crack propagation length) can be generalized to
the rate effect if the crack propagation velocity is assumed to depend either on the ratio of
the stress intensity factor to its critical value based on the R-curve, or on the difference
between these two variables. This dependence may be assumed in the form of an increasing
power function with a large exponent.

2. The creep in the bulk of a concrete specimen must also be taken into account, which can be
done by replacing the elastic constants in the LEFM formulas with a linear viscoelastic
operator in time. For rocks, which do not creep, this is not necessary.

3. The experimental observation that the brittleness of concrete increases with a decreasing
loading rate (i.e. the response shifts in the size effect plot closer to linear elastic fracture
mechanics) can be at least approximately modeled by assuming the effective fracture process
zone length in the R-curve expression to decrease with a decreasing rate. This dependence
may again be described by a power function.

4. Good agreement with the previous test results for concrete and limestone, recently measured
at very different loading rates, with times to peak ranging from I second to 250000 seconds,
is achieved.

5. The model can also predict the following phenomena recently observed in the laboratory:
(a) When the loading rate is suddenly increased, the slope of the load-displacement diagram

suddenly increases. For a sufficient rate increase, the slope becomes positive even in the
post-peak range, and later in the test a second peak, lower or higher than the first peak, is
observed. •

(b) When the rate suddenly decreases, the slope suddenly decreases and the response
approaches the load-displacement curve for the lower rate.

(c) When the displacement is arrested, relaxation causes a drop of load, approximately
following a logarithmic time curve.
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Fatigue Fracture of High-Strength Concrete and Size Effect

byZdnk P alnt and William F. Schell

Results of an expenmental stud% offatigue fracture of geonmetncallyvsinular cycle as a function of the amplitude of the stress intensity
high-strength concrete speci .mens of iver different Sizes are reporred and factor is invalid for concrete. although it has been widely used
analy-zed. Three-point bend not ched beanus 1.5 4.24. and 12 in. deep were for metals. However, after an adjustment for the size effect.'
sub*ete to cyclic loading with a lower load linmit of 0.07P. and an upper
limit between 0.73 and 0.84P.. where P. -mdiu loa in mauroi fatigue fracture of normal tte can be described very
loading. The number of cycles to failure .aged from 200 mo 41.OW0 h is well. The purpose of thisv,, io determine the laws that
found that the Paris law for the crack length increment per cycle as ajtmc- describe the fatigue fracture .,igh-strength concrete. Such
tnon of the stress intensityfalctor. which was previoustly tw ikfleAr ~norna laws are needed for predicting the growth of cracks in con-
concrete, is also appicable, to high-strength concrete. How-ever. ~for """ci crete structures under large repeated loads due to traffic.,, nd,
nuens of different sizes. an adjustmen, for the scze effect needs to be intro-
duced, of a similar ripe as pretvaoushY intrroaiced for normal concrete. This thermal cycles. etc.
size adjustment represents a gradual transiton firan crack pro% th gcove red
by stress anmplittude to crack grow-th got-erned b * stress interasir factor am- EXPERIMENTIAL INVESTIGATION
plitude. The' structure size for which this transition occurs is found to be
about anr order of magnitude smaller for high-strength concrete than for The test specimens were made of a high-strength concrete

* normal concrete. which means that the fracture process Zone under cyclic that is typical for the Chicago area. The conicrete mix was de-
loading is much snmaller and thc behavsor isramuch closer to linear elasticfrac- signed for compressive strength exceeding 12.000 psi. The ra-
lure mechartics (LEMFAf.. linear regression plot estimsating the size-ad- tios of the mix components to cement. by weight, were as fol-
justed parameters isi derrt'ed. An LEFM-type calculation of the deflections; lw:prln eet .0 ae:036 l s:012
under cyclic loading on the busis of the size-adjusted Paris la- vields cor-
rect u'alues for the terminal phase but grossl% underpredicts the intoal dr silica fume: 0.0507, 'Ai-in, maximum-diameter crushed ag-
flectirums. Ovetrall, the results underscore the importance of consideringfar- gregate: 2. 18, siliceous sand: 1.5 1. retarder: 0.00190, and su-
tigue fracture growth in the case of high-strength concrete sinkctures su~b- perplasticizer: 0.00951.
jec-ted to large, repeated loads, and taking into account the veen high brit- Three fracture specimens of varying size were cast from the
sleness under fatigue loading, same batch of concrete. The specimens were three-point bend

fracture specimens shown in Fig. 1.- Specimens of different
Keyworib: defection: br w4a kvile o f hgas prop~eiid; h.aremno ew. sizes were geometrically similar in two dimensions. having

the same thickness bequal to 38.1 mm (1.5Sin.) (as explained
in previous works, it is preferable to keep the thickness con-

Due to its more homogeneous microstructure. high- stamt because this minimizes the differences in hydration heat
strength concrete is more brittle than normal strength con- and drying effects, as well as in the so-called wall effect and
crete. This is most apparent from size effect tests, which effect of curvature of the fracture front throughout the thick-
showed that the response of typical fracwre spcmn mad ness). 'The beam depths were D = 38.1.107.8, and 304.8 mm
of high-strength concrete is very clos to linear elastic frac- (1.50, 4.24, and 12.00 in.). and fth ratio of the sizes was
ture mechanics.' 1 : AR :8. The span L was 2.5D, where D is the beam depth.

The fracturle properties of high-strengt conree have bee The notch, cut by a band saw, had the length a. = D/6. Also,
studied for monotonic loading: 2-'-3 however, no information six companion cylinders with diameter 101.6 mm (4 in.) and
appears to exist for fatigue loading. Such loadling is very im- length 203.2 mmn (8 in.) were cast from the same batch. All
poriant for bridges. offshore structures and structures sub- the specimens were compacted. removed from the mold after
jected to heavy wind loads or machinery. Cyclic loading 48 hr. and stored in a moist-curing room at 26 C for 56 days.
causes cracks to grow, which results in a growth of deflec-
tions and, after a certain number of cycles. may cause failure. ACt Mauerial Jurnal. V. 90. N&. S. Sepiamber-Ocuiber 1993.
Fatigue fracture has previously been experimentally studied ec -1"3 Apr. CO7. l99 ft. ANiee undrlasau e r ainsiL ching policis colives
for normal strength concrete." It has been found that the suamobns frm& op 7  mrewm etietdcsvn will
well-known Paris law giving the crack length increment pe ~Ibi in the July-Avowi 19W 1At tras Jamli eewd by Apr. 1.
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Fig. I-Specimen geometry

The fatigue tests were conducted in a closed-loop, digitally
controlled machine (MTS) with a 89.600 N (10 t) load ca-

pacity. The crack-mouth opening displacement (CMOD) was
measured by an MTS extensometer. Data acquisition for both

load and CMOD was performed by the computer controlling
the test. The control variable was the load P.

The overall experimental setup for the largest specimen is
shown in Fig. 2. To fit the largest beam in the testing frame.
a stiff steel beam is used as the base. A photo of the frame #agO
with the medium specimen and configuration of the instru-

ments is shown in Fig. 3.
The median age of the specimens at the time of test was 70

days. chosen higher than the usual 28 days to minimize the
strength gain due to aging during the testing. All the tests
were done within a span of 2 weeks. Companion cylinders
tested just before and after the fatigue testing revealed a

strength gain of only 3 percent, which was neglected in eval-
uating the tests.

Fatigue testing was preceded by compliance calibration of
the fracture specimens. The compliance calibration method.
verified for concrete in Reference 7. was used to determine

the crack length during the loading cycles, because determi-
nation of the effective crack length by optical measurements
is virtually impossible due to diffused cracking at the fracture
front. as well as the curvilinear shape of the crack front

through the specimen thickness, revealed by dye penetration Fig.. 3-Overall test arran.cement and in.trumnentation of

tests. The compliance calibration method was shown to work medimn specimen
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0.00004 with CMOD). Repeating the tests shown in Fig. 4 for a range
________________________ of crack lengfts. the comnpliance calibration curve (shown in

.0...70.. 110 Fig. 5for depthD =107.8 mm =4.24 in.) was obtained. one
LOAD (ibs) for each specimen size D. The elastic modulus values in the

theoretical expression for the compliance curve awe adjusted

Fig. 4-Load-CMOD curve for compliance calibration to obtain fth besg fit. as shown by the solid curve in Fig, 5.
me*4 This curve is then used to estimate the corresponding crack

length from the measured compliance during the fatigue test.
Prior to fatigue tests. monotonic load-controlled tests were

2.5 carried out to determine the maximum loads of the specimens.
These tests were used to determine the material fracture pa-
rameters according to the size effect method' and decide the

2.0 load values to be used in the fatigue experiments. The mea-
- sured peak loadms P. in monotunic tests are given in Table 1.

A typical load-CMOD curve for D - 76.2 mm (3 in.) is shown
1.5 in Fig. 6 for the high-strength concrete used in the current ex -

periments.
The Young's modulus of high-strengt concrete was esti-

W mated from the approximate emiiatormulas: E=3320f,'

Jf,= 0.94 sf=8.9 MPa (1290 psi). in which,' must be given
2 ~in MP&. The compressive strength fr/ was determined by-
o 0. 0 4. Intesting the companion cylinders according to ASTM stan-

dards. its average value at the beginning of the fatigue tests

0.0 _J was 90.3 MPa (13,100 psi). The fracture parameters, obtained
o.b ... ... 02 0 3...6i .. .ib h ieefc ehdfo h liaeIaso pcmn

0.0 ~ ~ /. 0.f va.ou 0 0. 05by sizesfecmeasuodfrondheurmontoloading. were:n

fracture toughness Kw a 44.7 N mm3-n; fracture energy Gf =
52.1 H/m; transitional size in the size effect law Do - 31.8

Fig. 5--Compliance calibration curve mim and effective lenrgth of the fracture process zone in an
infintitely large specimen cfn 7.6m nu= 0.84d where d. is the
maximum aggregate size - % in. (note that the value of cy is

for a-D < 0.5. which is suifficient for due prse mtet. The relatively small, which is the reason for the high degree of
compliance calibration warn dose on the actual fatigue spec- brittlenes of high-strength concrete).
imens. one calibration own for each size. The initial notch The fatigue tests were conducted at two different values of
length, a.- Mwas them for the atal fractur spec- the upper load limit Pu, equal to 0.75P. and 0.85PI. The
linens. Subsequently, making cuw with a band saw, the notch minimum load limit was approximately 0-07P. in all the tests
length was incremented. Each increment was assmedW to re- (it was necessary to maintain a nonzero load to avoid sepa-
move the previously formned fracture process zone, which was ration between the specimen and the loading fixture). Max-
rather small due to the small loads applied (the load was less imum iuad minimum load limits were constant during the fa-
than 20 percent of the maximum load). F~rom such measurre- tigue tests. The frequency chosen was 10 Hz. This is much
meets, a plot of the load values versus crack-mouth opening higher than the frequency of 0.04 Hz used by Babnt andl Xu. 5

displacement (CMOD) was obtained (Fig. 4) andl a regres- but it appears tha the frequency has a secondary influence
sion line was passe&. The slope of the iregression line is the compared to the influence of the number of cycles (although

copinefor the givuun crack length (actually it is not a cown this night not be tnz for cycle periods stretching over months
pliance coefficient in the seans of#an off-diagonal Wter of the and years). Despite the high frequency. no measurement or
compliance matrix, since the load P isamno associated by work stablit problems were encountered during the test. The comn-
474 ACI Merkats Journal / SeprnerOclober 1993



puter data acquisition system recorded the load. CMOD, 0oo
stroke. and cycle number for every peak and valley of the
load history.

500

ANALYSIS OF RESULTS
The results of the fatigue tests are given in Table 1. The

tests also include different load levels ranging from 73 to 84 .0. 40

percent of P. (ultimate load in monotonic loading). It is seen
from Table I that even such relatively small differences in K

o .300the upper load limit lead to enormous differences in number - .

of cycles to failure (ranging from 200 to 41.000). The loading
system was not capable. at the fast rate of loading, to produce
exactly the desired load limit in the cycle P.. set at the con- 200.
trols. This is why the recorded P,. values are slightly dif-
ferent. The evaluation was. of course, based on the actual
measured P.m. 1001 ... ... .. • . . . . . . . . .

A typical plot of the relative crack length a = a/D versus 0001

the number of cycles N for the middle-size specimen is pre- CMOD (in)
sented in Fig. 7(a). Considerable random differences among
the results were encountered for the largest specimens; Fig.
7(b) shows that in one specimen the crack virtually did not Fig. 6-Typical load-CMOD curve for high-strength concrete

grow until close to failure, while in another specimen the specimens used, D = 76.2 mm

crack grew almost uniformly throughout the duration of the
test (but the failure occurred after approximately the same 46
number of cycles). Probably these differences are due to er- (b) (a) "
rors of control and measurement. Nevertheless, the mean
trend described by these scattered results matches the other ,
tests and agrees with the present theory. However, since only I
five specimens were tested for the two different upper load
limits, more extensive testing is desirable in the future.

For many materials, the crack length increment per cycle ,,
approximately follows the empirical Paris law.'°0 which is V, .J

normally written as Ao&/tV = Co (AMY,] (Co replaces Paris'
notation C to avoid any confusion with compliance). This law
can be rewritten in the nondimensional form ass Fig. 7-Typical plots of relative crack length versus number

Aa 4 of cycles N recorded for (a) one medium and (b) two large

TNo Kk specimen

in which K = Co0k; AKi is the amplitude of the stress inten- plicable to normal concrete.3 However. it has been found that.
sity factor for the current crack length a; K or C. and n = em- in contrast to the previous experience with metals, the value
pirical constants; and Kk fracture toughness for monotonic of Kk cannot be kept the same for very different specimen
loading = a critical value of Kt for monotonic loading, which sizes. It appeared that a good agreement with the test results
is introduced for the convenience of dimensionality. The for different sizes can be obtained if the value of Kic is con-
stress intensity factor is calculated from the applied load P, sidered to be a function of the specimen size and the law gov-
using the well-known formula of linear elastic fracture me- erning Kk is taken to be the same as that ensuing from the size
chanics effect law for ltimate loads in monotonic tests, as proposed

in References 13 through 15. This previously derived law has

K, = ( (2) the following form
Xk : (3)

in which a = WD = relative crack length; for the present three-

point bend specimen. fta) = 6.647a'< 1 - 2.5ca + 4.49a 2 -
3.98a3 + !.33cz)/(l - a) 2 (which was obtained by curve-fit- in which D = /ID, = relative specimen size (also called the
ring of finite element results).' For other specimen geome- brittleness number since it determines the proximity to linear
tries, function Act) can be found in fracture textbooks and elastic fracture mechanics) and K/ = a constant which repre-
handbooks. 1 . 2 UsingAct), one has 5 C1 = Dog(ao)g'(Co) sents the asymptotic value of fracture toughness for an infi-
where g(a) =fl(A). nitely large specimen coinciding with the asymptotic value of

The validity of the Paris law [Eq. (I)] has been extensively the R-cumne. Do is an empirical constant that may be inter-
verified for metals, and recently it has also been shown ap- preted as the size in the middle of the transition between the
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Fig. 8(a)-Linear regression according to original Paris Law Fig. 8(c)-Linear regression with optimal fit (data include
(data points refer to individual specimens) two specimens per size)

crete, which was n - 10.6. Fig. 8(a) shows the plot of the pres-
(b ent test results for all specimen sizes when the value of Kk is

-2.00 . replaced by Kj= 1.0, as in the original (unadjusted) Paris law

+ ' (Eq. (l)]; the regression lines represent the optimal fits ob-
tained separately for each specimen size. The fact that these

-4.00 regression lines do not coincide and are not even close indi-
Scames that the original Paris law is not valid.

When the size adjustment according to Eq. (1) is intro-
4duced and the value of D. equal to the monotonic value (31.8

S -LAW0 ramin) obtained from the size effect method is used, one obtains
- 0 . the plot shown in Fig. 8(b) in which1 K = 1 /(l + 0)1"- =

+ MEhN= relative values of Kk from Eq. (3) (note that two of the three
-8.00 III straight lines nearly coincide). The fact that the regression

lines for different sizes are now very close to each other con-
I. firms that the size-adjusted Paris law (Eq. (1)1 is valid. Fur-

7.00 7.20 7.40 7.60 7.80 thermore, Fig. 8(c) shows the plot when all the results are
fitted by the same regression line, for which D. =- 1SdU where

lolgAK / 'h ,.) d. is the value for monotonic loading.'I For normal strength
concrete, the value of D. = 1O0d was found.5 Since D. is pro-

Fig. 8(b)-Linear regression according so size-adjusted Paris portional to the length of the fracture process zone from the
law (data include two specimie per size) size effect method, it can be concluded that the fracture

process zone is much smaller in high-strength concrete than

strength them and linear elatic fracture mechanics. For D in normal concrete during fatigue loading.

!D(0! 1).Eq. (1) is equa torack growth beingpr . Note that Eq. (1) and (3) yield

portional to the nth pow. of the nominal srms amplitude
[Eq. (10), ReferenceS),whlefbrDO D.06f I)othecrack a~,= 4
growth per cycle according to Eq. (1) depends orly on the ki AN
amplitude of the ss intsity facor, asin the clasical Paris
law (which as asyn¥pitically a"Ohed for tfficiendy %W This equation can further be algebraically rearranged to the
sizes).

The size-adjusted Paris law (Eq. (3)] his been verified for linear regression plot
normal concrete but nm. however, for high-stength concrete. Y= A, + BX (5)
Eq. (1) can be reduced to a linear regresion plot by plotting
log (ha/AN) venus iog(AK). as a mean of size adjustment, in which
versus log(AK/•k). The slope of th regression lines in all the
figures is the sawe (tamn as the average value of the regna-. 2
in slowpe for indvil sizes); dilo dope is n = 8.6, which Y(-La!') K,-,X= (6)

is4a slightly snia valueJthan do/ed from normal con- I-AN) I 1D
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2 00010

IC Kg-*.A -. IC;K#2LD (7) ,

S00005

Passing a regression line of measured Y-points versus X. one 3
obtains the values of slope Ai and Y-intercept A, from which
one can evaluate 0 o000

As ( 00004

The result is D, =a .42 which is close to the value l.d, T

found from nonlinear optiuization. This linear regression is C 0 o002
an alternative to the direct nonlinear optimization in the plot V
of the Paris law in Fig. 8(c). which is nonlinear. However, .

with a nonlinear optimization subroutine such as the Mar- 0.0000
quardt-Levenberg algorithm, direct determination of D, and ,o 200 3W 4W 50

K is also quite easy. number of cycles, N

DEFLECTION CURVE
Comparison of the calculated and measured deflection Fio 9-Measured and calculated loadnpoint displacements n

curve is the easiest and most unambiguous check of the frac- for nediwn-saze specimen
here formulation for monotnic loading. For the special case
of rate-independent elastic behavior and monotonic loading, Thus Eq. (13) and (14) define the load-deflection curve for
the curve of load P versus load-point deflection u of a • cyclic loading. Choosing a sequence of values of a, one can
tind specimen is given by the following well-known rela- calculate from Eq. (13) the number of cycles to reach this p
tion56 value and the corresponding displacement value from Eq.

P a (14).

-- C(o),ct = a (9) (4e load-point deflection curve calculated in this manner
E D is shown in Fig. 9. For comparison, the experimental curve

) = + 2 is also plotted. At the end there is a good agreement, but at
!(a) = Z. + 49() (10) the beginning of the test there is a large discrepancy. To elim- p

inate this discrepancy is probably beyond the capability of
the present theory, which represents a generalization of LEFM

(a) = J[f(t')]2da' (11) to fatigue. Probably it will be necessary to make generaliza-
0 tions akin to the R-curve for monotonic loading that take into

account in a simplified manner the growth of the apparent

P bV-D Kk (12) fracture toughness associated with the growth of the process
f(a) zone size.;1

in which l(a) is the unit load-point compliance (i.e., com- CONCLUSIONS
pliance for unit value of elastic modulus E) and C. is the ini- 1. As previously shown for normal concrete, the Paris law
tial unit compliance at a = a.. To determine the monotonic is also applicable to high-strength concrete, but only if the
load-deflection curve, one chooses a series of values of the specimen sizes do not vary significantly.
crack length a, and calculates u from Eq. (10) and (11) and P 2. For a broW range of specimen or structure sizes, the
from Eq. (12). Thus, Eq. (10) through (12) define the load- Paris law needs to be adjusted in the same manner as previ-
deflection curve pmunetically. ously proposed for normal concrete. The classical, unadjusted

For fatigue loading, the lowd-deflection curve may be cal- Paris law is approached asymptotically for large specimen
culated similarly to Eq. (10) through (12). From Eq. (1), we sizes.
express AN as a function of Aa and substitute the expression 3. The transitional size D. of the size adjustment of the
AKI = A,•ctYNr/ . Integration then yields Paris law has a value rather close to that for monotonic frac-

ture, while previous investigations of normal concrete indi-

( Kkb cated this value to be an order of magnitude higher. This
N() =iJ• (It')-t" d'" (13) means that the behavior of typical laboratory fracture speci-

0 Pmess of high-strength concrete under cyclic loading is quite

Eq. (10) can be rewritten in the form close to linear elastic fracture mechanics, while that of normal 0
concrete was previously found roughly in the middle of the
transition between the strength theory and linear elastic frac-

= PD rdC(a) , (14) re mechanics. This further implies that the fracture process
I da ' zone under cyclic loading is in high-strength concrete about
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